

US009045465B1

(12) United States Patent

von Deyn et al.

(13) Date 01

(10) **Patent No.:**

US 9,045,465 B1

(45) **Date of Patent:** *Jun. 2, 2015

(54) 3-HETEROCYCLYL-SUBSTITUTED BENZOYL DERIVATIVES

(75) Inventors: Wolfgang von Deyn, Neustadt (DE);
Regina Luise Hill, Speyer (DE); Uwe
Kardorff, Mannhaim (DE); Ernst
Baumann, Dudenhofen (DE); Stefan
Engel, Idstein (DE); Guido Mayer,
Neustadt (DE); Matthias Witschel,
Ludwigshafen (DE); Michael Rack,
Heidelberg (DE); Norbert Götz, Worms
(DE); Joachim Gebhardt, Wachenheim

(DE); Joachim Gebnardt, Wachenheir (DE); Ulf Mißlitz, Neustadt (DE); Helmut Walter, Obrigheim (DE); Karl-Otto Westphalen, Speyer (DE); Martina Otten, Ludwigshafen (DE); Joachim Rheinheimer, Ludwigshafen

(DE)

(73) Assignee: **BASF SE**, Ludwigshafen (DE)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 59 days.

This patent is subject to a terminal disclaimer.

(21) Appl. No.: **09/091,300**

(22) PCT Filed: Jan. 8, 1998

(86) PCT No.: **PCT/EP98/00069**

§ 371 (c)(1),

(2), (4) Date: **Jun. 16, 1998**

(87) PCT Pub. No.: WO98/31681PCT Pub. Date: Jul. 23, 1998

(30) Foreign Application Priority Data

Jan. 17, 1997 (DE) 197 01 446

(51) Int. Cl. C07D 413/10

(2006.01) (2006.01)

A01N 43/80 (52) **U.S. Cl.**

(58) Field of Classification Search

(56) References Cited

U.S. PATENT DOCUMENTS

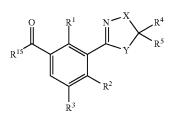
	* *	8/1987 8/1990 1/1991 12/1992 11/1995	Konotsune et al. Konotsune et al. Baba et al. Oya et al. Baba et al. Goto et al.	548/243 540/603 504/196 546/248 504/134
6,147,031 A		11/2000	Adachi et al	504/271

(Continued)

FOREIGN PATENT DOCUMENTS

WO 97/46530 12/1997	EP WO WO WO WO	203 428 96/26206 WO96/26206 97/41105 97/46530	12/1986 8/1996 * 8/1996 11/1997		C07D 409/10
---------------------	----------------------------	---	--	--	-------------

OTHER PUBLICATIONS


Silverman, R. B. (The Org. Chem. of Drug Design and Drug Action, Academic Press, Inc.: San Diego, 1992, pp. 4-51).* (Continued)

Primary Examiner — Robert Havlin

(74) Attorney, Agent, or Firm — Novak Druce Connolly Bove + Quigg LLP

(57) ABSTRACT

Benzoyl derivatives of the formula I

where the variables have the following meanings:

R¹, R² are hydrogen, nitro, halogen, cyano, alkyl, haloalkyl, alkoxy, haloalkoxy, alkylthio, haloalkylthio, alkylsulfinyl, haloalkylsulfinyl, alkylsulfonyl or C₁-C6-haloalkylsulfonyl;

R³ is hydrogen, halogen or alkyl;

R⁴, R⁵ are hydrogen, halogen, cyano, nitro, alkyl, alkoxy, alkylthio, dialkylamino, phenyl or carbonyl, it being possible for the 6 last-mentioned radicals to be substituted;

X is O, S, NR9, CO or CR10R11;

Y is O, S, NR¹², CO or CR¹³R¹⁴;

R¹⁵ is pyrazole which is unsubstituted or substituted, linked in the 4-position and has attached to it in the 5-position a hydroxyl or sulfonyloxy radical;

and the agriculturally useful salts thereof; processes and intermediates for the preparation of the 3-heterocyclyl-substituted benzoyl derivatives; compositions comprising them; and the use of these derivatives or compositions comprising them for controlling undesirable plants.

7 Claims, No Drawings

US 9,045,465 B1

Page 2

(56) References Cited

OTHER PUBLICATIONS

U.S. PATENT DOCUMENTS

6,525,204 B	1 * 2/2003	Rheinheimer et al	548/240
6,613,719 B	1 * 9/2003	Kudis et al	504/271
7,151,075 B2	2 * 12/2006	Baumann et al	504/271
7,232,792 B2	2 * 6/2007	von Deyn et al	504/266

Taylor, "An introduction to error analysis," 2nd ed. (1997), 329 pages. Chapters 1-2 provided.*

Cumming et al. (JCB, (2007) v. 177, p. 7-11).*

^{*} cited by examiner

ΙΙ

3-HETEROCYCLYL-SUBSTITUTED BENZOYL DERIVATIVES

The present invention relates to 3-heterocyclyl-substituted benzoyl derivatives of the formula I

where the variables have the following meanings:

R¹, R² are hydrogen, nitro, halogen, cyano, C₁-C₆-alkyl, $C_1\text{-}C_6\text{-haloalkyl}, \quad C_1\text{-}C_6\text{-alkoxy}, \quad C_1\text{-}C_6\text{-haloalkoxy}, \ ^{20}$ $C_1\hbox{-} C_6\hbox{-alkylthio}, \ \ C_1\hbox{-} C_6\hbox{-haloalkylthio}, \ \ C_1\hbox{-} C_6\hbox{-alkylsulfi-}$ nyl, C_1 - C_6 -haloalkylsulfinyl, C_1 - C_6 -alkylsulfonyl or C₁-C₆-haloalkylsulfonyl:

 R^3 is hydrogen, halogen or C_1 - C_6 -alkyl;

R⁴, R⁵ are hydrogen, halogen, cyano, nitro, C₁-C₄-alkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, $di(C_1$ - C_4 -alkoxy)- C_1 - C_4 alkyl, di(C₁-C₄-alkyl)-amino-C₁-C₄-alkyl, [2,2-di(C₁-C₄alkyl)-1-hydrazino]-C₁-C₄-alkyl, C₁-C₆-alkyliminooxy- C_1 - C_4 -alkyl, C_1 - C_4 -alkoxycarbonyl- C_1 - C_4 -alkyl, C_1 - C_4 -30alkylthio-C₁-C₄-alkyl, C_1 - C_4 -haloalkyl, cyanoalkyl, C3-C8-cycloalkyl, C1-C4-alkoxy, C1-C4alkoxy- C_2 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, hydroxyl, C₁-C₄-alkylcarbonyloxy, C₁-C₄-alkylthio, C₁-C₄-haloalkylthio, di(C₁-C₄-alkyl)amino, COR⁶, phenyl or ben- 35 zyl, it being possible for the two last-mentioned substituents to be fully or partially halogenated and/or to have attached to them one to three of the following groups: nitro, cyano, C1-C4-haloalkyl, C1-C4-alkoxy or C1-C4-ha-

or

R⁴ and R⁵ together form a C₂-C₆-alkanediyl chain which can be mono- to tetrasubstituted by C₁-C₄-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁-C₄-alkyl;

R⁴ and R⁵ together with the corresponding carbon form a carbonyl or thiocarbonyl group;

 R^6 is hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C₁-C₄-alkoxy-C₂-C₄-alkoxy, C₁-C₄-haloalkoxy, C₃-C₆- 50 alkenyloxy, C₃-C₆-alkynyloxy or NR⁷R⁶;

 R^7 is hydrogen or C_1 - C_4 -alkyl;

R⁸ is C₁-C₄-alkyl; X is O, S, NR⁹, CO or CR¹⁰R¹¹; Y is O, S, NR¹², CO or CR¹³R¹⁴;

 R^9 , R^{12} are hydrogen or C_1 - C_4 -alkyl;

 R^{10} , R^{11} , R^{13} , R^{14} are hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C₁-C₄-alkoxycarbonyl, C₁-C₄-haloalkoxycarbonyl or CONR⁷R⁸;

60

or

 R^4 and R^9 or R^4 and R^{10} or R^5 and R^{12} or R^5 and R^{13} together form a C2-C6-alkanediyl chain which can be mono- to tetrasubstituted by C₁-C₄-alkyl and/or interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl;

R15 is a pyrazole of the formula II which is linked in the 4-position

where

 R^{16} is C_1 - C_6 -alkyl;

Z is H or SO_2R^{17} ;

 R^{17} is C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, phenyl or phenyl which is partially or fully halogenated and/or has attached to it one to three of the following groups: nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

 R^{18} is hydrogen or C_1 - C_6 -alkyl;

where X and Y are not simultaneously oxygen or sulfur; with the exception of 4-[2-chloro-3-(4,5-dihydroisoxazol-3yl)-4-methylsulfonylbenzoyl]-1-ethyl-5-hydroxy-1H-pyrazole, 4-[2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole, 4-[2chloro-3-(5-cyano-4,5-dihydroisoxazol-3-yl)-4methylsulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1H-4-[2-chloro-3-(4,5-dihydrothiazol-2-yl)-4-

methylsulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1Hpyrazole and 4-[2-chloro-3-(thiazoline-4,5-dion-2-yl)-4methylsulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1Hpyrazole;

or the agriculturally useful salts thereof.

The invention furthermore relates to processes and intermediates for the preparation of compounds of the formula I, to compositions comprising them, and to the use of these derivatives or compositions comprising them for the control of harmful plants.

Pyrazol-4-yl-benzoyl derivatives have been disclosed in the literature, for example in WO 96/26206.

However, the herbicidal properties of the compounds 40 which have been known to date and their compatibility properties regarding crop plants are only moderately satisfactory.

It is an object of the present invention to provide novel, in particular herbicidally active, compounds which have improved properties.

We have found that this object is achieved by the 3-heterocyclyl-substituted benzoyl derivatives of the formula I and by their herbicidal activity.

We have furthermore found herbicidal compositions which comprise the compounds I and which have a very good herbicidal activity. Moreover, we have found processes for the preparation of these compositions and methods of controlling undesirable vegetation using the compounds I.

Depending on the substitution pattern, the compounds of the formula I can contain one or more chiral centers, in which 55 case they exist as enantiomer or diastereomer mixtures. The present invention relates to the pure enantiomers or diastereomers and to the mixtures thereof.

The compounds of the formula I may also exist in the form of their agriculturally useful salts, the type of salt generally being of no importance. In general, suitable salts are the salts of those cations or the acid addition salts of those acids whose cations, or anions, respectively, do not adversely affect the herbicidal activity of the compounds

Suitable cations are, in particular, ions of the alkali metals, preferably lithium, sodium and potassium, of the alkaline earth metals, preferably calcium and magnesium, and of the

transition metals, preferably manganese, copper, zinc and iron, and also ammonium, it being possible in this case, if desired, for one to four hydrogen atoms to be replaced by $\rm C_1\text{-}C_4\text{-}alkyl,\ hydroxy\text{-}C_1\text{-}C_4\text{-}alkyl,\ C_1\text{-}C_4\text{-}alkoxy\text{-}C_1\text{-}C_4\text{-}alkyl,\ phenyl or benzyl,}}$ 5 preferably ammonium, dimethylammonium, diisopropylammonium, tetramethylammonium, tetrabutylammonium, 2-(2-hydroxyeth-1-oxy)eth-1-ylammonium, in addition phosphonium ions, sulfonium ions, preferably $\rm tri(C_1\text{-}C_4\text{-}alkyl)$ sulfonium and sulfoxonium ions, preferably $\rm tri(C_1\text{-}C_4\text{-}alkyl)$ sulfoxonium.

Anions of useful acid addition salts are mainly chloride, bromide, fluoride, hydrogen sulfate, sulfate, dihydrogen phosphate, hydrogen phosphate, nitrate, hydrogen carbonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate, and the anions of $\rm C_1\text{-}C_4\text{-}alkanoic}$ acids, preferably formate, acetate, propionate and butyrate.

The organic moieties mentioned for the substituents 20 R¹-R¹⁸ or as radicals on phenyl rings are collective terms for individual enumerations of the individual group members. All hydrocarbon chains, ie. all alkyl, haloalkyl, cyanoalkyl, alkoxy, haloalkoxy, alkyliminooxy, alkylcarbonyloxy, alkylthio, haloalkylthio, alkylsulfinyl, haloalkylsulfinyl, alkylsul- 25 fonyl, haloalkylsulfonyl, alkoxycarbonyl, haloalkoxycarbonyl, alkenyloxy, alkynyloxy, dialkylamino, dialkylhydrazino, alkoxyalkyl, hydroxyalkoxyalkyl, dialkoxyalkyl, alkylthioalkyl, dialkylaminoalkyl, dialkylhydrazinoalkyl, alkyliminooxyalkyl, alkoxycarbonylalkyl and alkoxyalkoxy moieties, can be straight-chain or branched. Unless otherwise specified, halogenated substituents preferably have attached to them one to five identical or different halogen atoms. The meaning of halogen is in each case fluorine, chlorine, bromine or iodine.

Other examples of meanings are:

- C_1 - C_4 -alkyl and the alkyl moieties of di- $(C_1$ - C_4 -alkoxy)- C_1 - C_4 -alkyl, [2,2-di(C_1 - C_4 -alkyl)-1-hydrazino]- C_1 - C_4 -alkyl, hydroxy- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl and C_1 - C_4 -alkylcarbonyloxy: for example methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl and 1,1-dimethylethyl;
- C₁-C₆-alkyl: C₁-C₄-alkyl as mentioned above and, for example, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1,1,2-trimethylpropyl, 1-ethyl-1-methylpropyl and 1-ethyl-3-methylpropyl;
- C₁-C₄-haloalkyl: a C₁-C₄-alkyl radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, for example chloromethyl, 55 dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 2-fluoroethyl, 2-chloroethyl, 2-bromoethyl, 2-iodoethyl, 2,2-difluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl, pentafluoroethyl, 2-fluoropropyl, 3-fluoropropyl, 2,2-difluoropropyl, 2,3-dichloropropyl, 2-chloropropyl, 3-chloropropyl, 2,3-dichloropropyl, 2-bromopropyl, 3-bromopropyl, 3,3,3-trifluoropropyl, heptafluoropropyl, 1-(fluoromethyl)-2-fluoroethyl, 1-(chloropropyl, 1-(fluoromethyl)-2-fluoroethyl, 1-(chloromethyl)

4

- romethyl)-2-chloroethyl, 1-(bromomethyl)-2-bromoethyl, 4-fluorobutyl, 4-chlorobutyl, 4-bromobutyl and nonafluorobutyl;
- C₁-C₆-haloalkyl: C₁-C₄-haloalkyl as mentioned above and, for example, 5-fluoropentyl, 5-chloropentyl, 5-bromopentyl, 5-iodopentyl, undecafluoropentyl, 6-fluorohexyl, 6-chlorohexyl, 6-bromohexyl, 6-iodohexyl and dodecafluorohexyl;
- C₁-C₄-cyanoalkyl: for example cyanomethyl, 1-cyanoeth-1-yl, 2-cyanoprop-1-yl, 2-cyanoprop-1-yl, 3-cyanoprop-1-yl, 1-cyanoprop-2-yl, 2-cyanoprop-2-yl, 1-cyanobut-1-yl, 2-cyanobut-1-yl, 3-cyanobut-1-yl, 4-cyanobut-1-yl, 1-cyanobut-2-yl, 2-cyanobut-2-yl, 2-cyanobut-3-yl, 1-cyano-2-methylprop-3-yl, 2-cyano-2-methylprop-3-yl, 3-cyano-2-methylprop-3-yl and 2-cyanomethylprop-2-yl:
- C₁-C₄-alkoxy and the alkoxy moieties of di-(C₁-C₄-alkoxy)-C₁-C₄-alkyl and hydroxy-C₁-C₄-alkoxy-C₁-C₄-alkyl: for example methoxy, ethoxy, propoxy, 1-methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy and 1,1-dimethylethoxy;
- C_1 - C_6 -alkoxy: C_1 - C_4 -alkoxy as mentioned above and, for example, pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methoxylbutoxy, 1,1-dimethylpropoxy, 1,2-dimelhylpropoxy, 2,2-dimethylpropoxy, 1-ethylpropoxy, hexoxy, 1-methylpentoxy, 2-methylpentoxy, 3-methylpentoxy, 4-methylpentoxy, 1,1-dimethylbutoxy, 1.2dimethylbutoxy, 1,3-dimethylbutoxy, 2,2dimethylbutoxy, 2,3-dimethylbutoxy, 3,3dimethylbutoxy, 1-ethylbutoxy, 2-ethylbutoxy, 1,1,2trimethylpropoxy, 1,2,2-trimethylpropoxy, 1-ethyl-1methylpropoxy and 1-ethyl-2-methylpropoxy;
- C₁-C₄-haloalkoxy: a C₁-C₄-alkoxy radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, for example fluoromethoxy, difluoromethoxy, trifluoromethoxy, chlorodifluoromethoxy, bromodifluoromethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2-bromomethoxy, 2-iodoethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro-2fluoroethoxy, 2-chloro-2,2-difluoroethoxy, dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy, pentafluoroethoxy, 2-fluoropropoxy, 3-fluoropropoxy, 2-chloropropoxy, 3-chloropropoxy, 2-bromopropoxy, 3-bromopropoxy, 2,2-difluoropropoxy, 2,3-difluoropropoxy, 2,3-dichloropropoxy, 3,3,3-trifluoropropoxy, 3,3, 3-trichloropropoxy, 2,2,3,3,3-pentafluoropropoxy, heptafluoropropoxy, 1-(fluoromethyl)-2-fluoroethoxy, 1-(chloromethyl)-2-chloroethoxy, 1-(bromomethyl)-2bromoethoxy, 4-fluorobutoxy, 4-chlorobutoxy, 4-bromobutoxy and nonafluorobutoxy;
- C₁-C₆-haloalkoxy: C₁-C₄-haloalkoxy as mentioned above and, for example, 5-fluoropentoxy, 5-chloropentoxy, 5-bromopentoxy, 5-iodopentoxy, undecafluoropentoxy, 6-fluorohexoxy, 6-chlorohexoxy, 6-bromohexoxy, 6-iodohexoxy and dodecafluorohexoxy;
- C₁-C₆-alkyliminooxy and the C₁-C₆-akyliminooxy moieties of C₁-C₆-alkyliminooxy-C₁-C₄-alkyl: for example methyliminooxy, ethyliminooxy, 1-propyliminooxy, 2-propyliminooxy, 1-butyliminooxy, 2-butyliminooxy, 2-methylprop-1-yliminooxy, 1-pentyliminooxy, 2-pentyliminooxy, 3-methylbut-2-yliminooxy, 2-methylbut-1-yliminooxy, 3-methylbut-1-yliminooxy, 1-hexyliminooxy, 2-Hexyliminooxy, 3-hexyliminooxy, 2-methylpent-1-yliminooxy, 3-methylpent-1-yliminooxy, 2-ethylbut-1-yliminooxy, 3-ethylbut-1-yliminooxy, 2,3-ethylbut-1-yliminooxy, 2,3-

dimethylbut-1-yliminooxy, 3-methylpent-2-yliminooxy, 4-methylpent-2-yliminooxy and 3,3-dimethylbut-2-yliminooxy;

C₁-C₄-alkylthio: for example methylthio, ethylthio, propylthio, 1-methylethylthio, butylthio, 1-methylpropylthio, 5 2-methylpropylthio and 1,1-dimethylethylthio;

- $\begin{array}{lll} C_1 C_6 alkylthio: C_1 C_4 alkylthio as mentioned above and, \\ for example, pentylthio, 1-methylbutylthio, 2-methylbutylthio, 3-methylbutylthio, 2,2-dimethylpropylthio, 1-ethylpropylthio, hexylthio, 1,1-dimethylpropylthio, 10,2-dimethylpropylthio, 1-methylpentylthio, 2-methylpentylthio, 3-methylpentylthio, 4-methylpentylthio, 1,1-dimethylbutylthio, 1,2-dimethylbutylthio, 1,3-dimethylbutylthio, 2,2-dimethylbutylthio, 2,3-dimethylbutylthio, 3,3-dimethylbutylthio, 1-ethylbutylthio, 2-ethylbutylthio, 1,1,2-trimethylpropylthio, 1,2,2-trimethylpropylthio, 1-ethyl-1-methylpropylthio and 1-ethyl-2-methylpropylthio; \\ \end{array}$
- C₁-C₄-haloalkylthio: a C₁-C₄-alkylthio radical as mentioned above, which is partially or fully substituted by 20 fluorine, chlorine, bromine and/or iodine, for example fluoromethylthio, difluoromethylthio, trifluoromethylthio, chlorodifluoromethylthio, bromodifluoromethylthio, 2-fluorethylthio, 2-chloroethylthio, 2-bromoethylthio, 2-iodoethylthio, 2,2-difluoroethylthio, 2,2,2-25 trifluoroethylthio, 2,2,2-trichloroethylthio, 2-chloro-2fluoroethylthio, 2-chloro-2,2-difluoroethylthio, 2,2pentafluoroethylthio. dichloro-2-fluoroethylthio, 2-fluoropropylthio, 3-fluoropropylthio, 2-chloropropylthio, 3-chloropropylthio, 2-bromopropylthio, 3-bro- 30 mopropylthio, 2,2-difluoropropylthio, 2,3-difluoropropylthio, 2,3-dichloropropylthio, trifluoropropylthio, 3,3,3-trichloropropylthio, 2,2,3,3,3pentafluoropropylthio, heptafluoropropylthio, 1-(fluoromethyl)-2-fluoroethylthio, 1-(chloromethyl)- 35 2-chloroethylthio, 1-(bromomethyl)-2-bromoethylthio, 4-fluorobutylthio, 4-chlorobutylthio, 4-bromobutylthio and nonafluorobutylthio;
- C₁-C₆-haloalkylthio: C₁-C₄-haloalkylthio as mentioned above and, for example, 5-fluoropentylthio, 5-chloro- 40 pentylthio, 5-bromopentylthio, 5-iodopentylthio, undecafluoropentylthio, 6-fluorohexylthio, 6-chlorohexylthio, 6-bromohexylthio, 6-iodohexylthio and dodecafluorohexylthio;
- C_1 - C_6 -alkylsulfinyl (C_1 - C_6 -alkyl-S(\bigcirc O) \bigcirc): for example 45 methylsulfinyl, ethylsulfinyl, propylsulfinyl, 1-methylethylsulfinyl, butylsulfinyl, 1-methylpropylsulfinyl, 2-methylpropylsulfinyl, 1,1-dimethylethylsulfinyl, pentylsulfinyl, 1-methylbutylsulfinyl, 2-methylbutylsulfinyl, 3-methylbutylsulfinyl, 2,2-dimethylpropylsulfinyl, 50 1-ethylpropylsulfinyl, 1,1-dimethylpropylsulfinyl, 1,2dimethylpropylsulfinyl, hexylsulfinyl, 1-methylpentylsulfinyl, 2-methylpentylsulfinyl, 3-methylpentylsulfinyl, 4-methylpentylsulfinyl, 1,1-dimethylbutylsulfinyl, 1,2-dimethylbutylsulfinyl, 1,3-dimethylbutylsulfinyl, 55 2,2-dimethylbutylsulfinyl, 2,3-dimethylbutylsulfinyl, 3,3-dimethylbutylsulfinyl, 1-ethylbutylsulfinyl, 2-ethylbutylsulfinyl, 1,1,2-trimethylpropylsulfinyl, 1,2,2-trimethylpropylsulfinyl, 1-ethyl-1-methylpropylsulfinyl and 1-ethyl-2-methylpropylsulfinyl;
- C₁-C₆-haloalkylsulfinyl: a C₁-C₆-alkylsulfinyl radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, for example fluoromethylsulfinyl, difluoromethylsulfinyl, trifluoromethylsulfinyl, chlorodifluoromethylsulfinyl, 65 bromodifluoromethylsulfinyl, 2-fluoroethylsulfinyl, 2-chloroethylsulfinyl, 2-bromoethylsulfinyl, 2-iodoeth-

6

ylsulfinyl, 2,2-difluoroethylsulfinyl, 2,2,2-trifluoroethylsulfinyl, 2,2,2-trichloroethylsulfinyl, 2-chloro-2-fluoroethylsulfinyl, 2-chloro-2,2-difluoroethylsulfinyl, 2,2-dichloro-2-fluoroethylsulfinyl,

pentafluoroethylsulfinyl, 2-fluoropropylsulfinyl, 3-fluoropropylsulfinyl, 2-chloropropylsulfinyl, 3-chloropropylsulfinyl, 2-bromopropylsulfinyl, 3-bromopropyl-2,2-difluoropropylsulfinyl, sulfinyl, difluoropropylsulfinyl, 2,3-dichloropropylsulfinyl, 3,3, 3-trifluoropropylsulfinyl, 3,3,3-trichloropropylsulfinyl, 2,2,3,3,3-pentafluoropropylsulfinyl, heptafluoropropyl-1-(fluoromethyl)-2-fluoroethylsulfinyl, 1-(chloromethyl)-2-chloroethylsulfinyl, 1-(bromomethyl)-2-bromoethylsulfinyl, 4-fluorobutylsulfinyl, 4-chlorobutylsulfinyl, 4-bromobutylsulfinyl, nonafluorobutylsulfinyl, 5-fluoropentylsulfinyl, 5-chloropentylsulfinyl, 5-bromopentylsulfinyl, 5-iodopentylsulfinyl, undecafluoropentylsulfinyl, 6-fluorohexylsulfinyl, 6-chlorohexylsulfinyl, 6-bromohexylsulfinyl, dohexylsulfinyl and dodecafluorohexylsulfinyl:

- C_1 - C_6 -alkylsulfonyl $(C_1 - C_6 - alkyl - S(=O)_2 - alkyl - alkyl - S(=O)_2 - alkyl - alkyl - S(=O)_2 - alkyl - alk$ example methylsulfonyl, ethylsulfonyl, propylsulfonyl, 1-methylethylsulfonyl, butylsulfonyl, 1-methylpropylsulfonyl, 2-methylpropylsulfonyl, 1,1-dimethylethylsulfonyl, pentylsulfonyl, 1-methylbutylsulfonyl, 2-methylbutylsulfonyl, 3-methylbutylsulfonyl, dimethylpropylsulfonyl, 1,2-dimethylpropylsulfonyl, 1-ethylpropylsulfonyl, 2,2-dimethylpropylsulfonyl, hexylsulfonyl, 1-methylpentylsulfonyl, 2-methylpentylsulfonyl, 3-methylpentylsulfonyl, 4-methylpentylsulfonyl, 1,1-dimethylbutylsulfonyl, 1,2-dimethylbutylsulfonyl, 1,3-dimethylbutylsulfonyl, dimethylbutylsulfonyl, 2,3-dimethylbutylsulfonyl, 3,3dimethylbutylsulfonyl, 1-ethylbutylsulfonyl, 2-ethylbutylsulfonyl, 1,1,2-trimethylpropylsulfonyl, 1,2,2-trimethylpropylsulfonyl, 1-ethyl-1-methylpropylsulfonyl and 1-ethyl-2-methylpropylsulfonyl;
- C₁-C₆-haloalkylsulfonyl: a C₁-C₆-alkylsulfonyl radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, for example fluoromethylsulfonyl, difluoromethylsulfonyl, trifluoromethylsulfonyl, chlorodifluoromethylsulfonyl, bromodifluoromethylsulfonyl, 2-fluoroethylsulfonyl, 2-chloroethylsulfonyl, 2-iodoethylsulfonyl, 2,2-difluoroethylsulfonyl, 2,2,2-trifluoroethylsulfonyl, 2-chloro-2-fluoroethylsulfonyl, 2-chloro-2.2-difluoroethylsulfonyl, 2.2-dichloro-2fluoroethylsulfonyl, 2,2,2-trichloroethylsulfonyl, pentafluoroethylsulfonyl, 2-fluoropropylsulfonyl, 3-fluoropropylsulfonyl, 2-chloropropylsulfonyl, 3-chloropropylsulfonyl, 2-bromopropylsulfonyl, 3-bromopropylsulfonyl, 2,2-difluoropropylsulfonyl, 2,3-difluoropropylsulfonyl, 2,3-dichloropropylsulfonyl, 3,3,3trifluoropropylsulfonyl, 3,3,3-trichloropropylsulfonyl, 2,2,3,3,3-pentafluoropropylsulfonyl, heptafluoropropylsulfonyl, 1-(fluoromethyl)-2-fluoroethylsulfonyl, 1-(chloromethyl)-2-chloroethylsulfonyl, 1-(bromomethyl)-2-bromoethylsulfonyl, 4-fluorobutylsulfonyl, 4-chlorobutylsulfonyl, 4-bromobutylsulfonyl, nonafluorobutylsulfonyl, 5-fluoropentylsulfonyl, 5-chloropentylsulfonyl, 5-bromopentylsulfonyl, 5-iodopentylsulfonyl, 6-fluorohexylsulfonyl, 6-bromohexylsulfonyl, 6-iodohexylsulfonyl and dodecafluorohexylsulfonyl;
- C₁-C₄-alkoxycarbonyl: for example methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, 1-methylethoxycarbonyl, butoxycarbonyl, 1-methylpropoxycarbonyl, 2-methylpropoxycarbonyl and 1,1-dimethoxycarbonyl;

7

 C_1 - C_4 -haloalkoxycarbonyl: a C_1 - C_4 -alkoxycarbonyl as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, for example fluoromethoxycarbonyl, difluoromethoxycartrifluoromethoxycarbonyl, bonyl, chlorodifluo- 5 romethoxycarbonyl, bromodifluoromethoxycarbonyl, 2-fluoroethoxycarbonyl, 2-chloroethoxycarbonyl, 2-bromoethoxycarbonyl, 2-iodoethoxycarbonyl, 2,2-difluoroethoxycarbonyl, 2,2,2-trifluoroethoxycarbonyl, 2-chloro-2-fluoroethoxycarbonyl, 2-chloro-2,2-difluo- 10 roethoxycarbonyl, 2,2-dichloro-2-fluoroethoxycarbonyl, 2,2,2-trichloroethoxycarbonyl, pentafluoroethoxy-2-fluoropropoxycarbonyl, carbonyl, 2-chloropropoxycarbonyl, 3-fluoropropoxycarbonyl, 3-chloropropoxycarbonyl, 2-bromopropoxycarbonyl, 15 3-bromopropoxycarbonyl, 2,2-difluoropropoxycarbonyl, 2,3-difluoropropoxycarbonyl, 2,3-dichloropropoxycarbonyl, 3,3,3-trifluoropropoxycarbonyl, 3,3,3trichloropropoxycarbonyl, 2,2,3,3,3pentafluoropropoxycarbonyl.

heptafluoropropoxycarbonyl, 1-(fluoromethyl)-2-fluoroethoxycarbonyl, 1-(chloromethyl)-2-chloroethoxycarbonyl, 1-(bromomethyl)-2-bromoethoxycarbonyl, 4-fluorobutoxycarbonyl, 4-chlorobutoxycarbonyl, 4-bromobutoxycarbonyl and 4-iodobutoxycarbonyl; C₃-C₆-alkenyloxy: for example prop-1-en-1-yloxy, prop-

2-en-1-yloxy, 1-methylethenyloxy, buten-1-yloxy, buten-2-yloxy, buten-3-yloxy, 1-methylprop-1-en-1yloxy, 2-methylprop-1-en-1-yloxy, 1-methylprop-2-en-1-yloxy, 2-methylprop-2-en-1-yloxy, penten-1-yloxy, 30 penten-2-yloxy, penten-3-yloxy, penten-4-yloxy, 1-methylbut-1-en-1-yloxy, 2-methylbut-1-en-1-yloxy, 3-methylbut-1-en-1-yloxy, 1-methylbut-2-en-1-yloxy, 2-methylbut-2-en-1-yloxy, 3-methylbut-2-en-1-yloxy, 1-methylbut-3-en-1-yloxy, 2-methylbut-3-en-1-yloxy, 35 3-methylbut-3-en-1-yloxy, 1,1-dimethylprop-2-en-1yloxy, 1,2-dimethylprop-1-en-1-yloxy, 1,2-dimethylprop-2-en-1-yloxy, 1-ethylprop-1-en-2-yloxy, 1-ethylprop-2-en-1-yloxy, hex-1-en-1-yloxy, hex-3-en-1hex-5-en-1-yloxy, 40 hex-4-en-1-yloxy, 1-methylpent-1-en-1-yloxy, 2-methylpent-1-en-1yloxy, 3-methylpent-1-en-1-yloxy, 4-methylpent-1-en-1-yloxy, 1-methylpent-2-en-1-yloxy, 2-methylpent-2en-1-yloxy, 3-methylpent-2-en-1-yloxy, 4-methylpent-2-en-1-yloxy, 1-methylpent-3-en-1-yloxy, 45 3-methylpent-3-en-1-2-methylpent-3-en-1-yloxy, vloxy, 4-methylpent-3-en-1-vloxy, 1-methylpent-4-en-1-yloxy, 2-methylpent-4-en-1-yloxy, 3-methylpent-4-4-methylpent-4-en-1-yloxy, en-1-yloxy, dimethylbut-2-en-1-yloxy, 1,1-dimethylbut-3-en-1- 50 yloxy, 1,2-dimethylbut-1-en-1-yloxy, 1,2-dimethylbut-1,2-dimethylbut-3-en-1-yloxy, 1,3-2-en-1-yloxy, dimethylbut-1-en-1-yloxy, 1,3-dimethylbut-2-en-1yloxy, 1,3-dimethylbut-3-en-1-yloxy, 2,2-dimethylbut-2,3-dimethylbut-1-en-1-yloxy, 2,3- 55 3-en-1-yloxy, dimethylbut-2-en-1-yloxy, 2,3-dimethylbut-3-en-1yloxy, 3,3-dimethylbut-1-en-1-yloxy, 3,3-dimethylbut-2-en-1-yloxy, 1-ethylbut-1-en-1-yloxy, 1-ethylbut-2en-1-yloxy, 1-ethylbut-3-en-1-yloxy, 2-ethylbut-1-en-1-yloxy, 2-ethylbut-2-en-1-yloxy, 2-ethylbut-3-en-1- 60 yloxy, 1,1,2-trimethylprop-2-en-1-yloxy, 1-ethyl-1methylprop-2-en-1-yloxy, 1-ethyl-2-methylprop-1-en-1-yloxy and 1-ethyl-2-methylprop-2-en-1-yloxy;

C₃-C₆-alkynyloxy: for example prop-1-yn-1-yloxy, prop-2-yn-1-yloxy, but-1-yn-1-yloxy, but-1-yn-3-yloxy, but-65 1-yn-4-yloxy, but-2-yn-1-yloxy, pent-1-yn-1-yloxy, pent-1-yn-3-yloxy, pent-1-yn-4-yloxy, pent-1-yn-58

yloxy, pent-2-yn-1-yloxy, pent-2-yn-4-yloxy, pent-2yn-5-yloxy, 3-methylbut-1-yn-3-yloxy, 3-methylbut-1yn-4-yloxy, hex-1-yn-1-yloxy, hex-1-yn-3-yloxy, hex-1-yn-4-yloxy, hex-1-yn-5-yloxy, hex-1-yn-6-yloxy, hex-2-yn-1-yloxy, hex-2-yn-4-yloxy, hex-2-yn-5-yloxy, hex-2-yn-6-yloxy, hex-3-yn-1-yloxy, hex-3-yn-2-vloxy, 3-methylpent-1-vn-1-vloxy, 3-methylpent-1-vn-3yloxy, 3-methylpent-1-yn-4-yloxy, 3-methylpent-1-yn-5-yloxy, 4-methylpent-1-yn-1-yloxy, 4-methylpent-2yn-4-yloxy and 4-methylpent-2-yn-5-yloxy;

di(C₁-C₄-alkyl)amino: for example N,N-dimethylamino, N,N-diethylamino, N,N-dipropylamino, N,N-di(1-methylethyl)amino, N,N-dibutylamino, N,N-di(1-methylpropyl)amino, N,N-di(2-methylpropyl)amino, N,N-di (1,1-dimethylethyl)amino, N-ethyl-N-methylamino, N-methyl-N-(1-methyl-N-methyl-N-propylamino, ethyl)amino, N-butyl-N-methylamino, N-methyl-N-(1methylpropyl)amino, N-methyl-N-(2-methylpropyl) amino, N-(1,1-dimethylethyl)-N-methylamino, N-ethyl-N-propylamino, N-ethyl-N-(1-methylethyl) amino, N-butyl-N-ethylamino, N-ethyl-N-(1-methylpropyl)amino, N-ethyl-N-(2-methylpropyl)amino, N-ethyl-N-(1,1-dimethylethyl)amino, N-(1-methylethyl)-N-propylamino, N-butyl-N-propylamino, N-(1methylpropyl)-N-propylamino, N-(2-methylpropyl)-Npropylamino, N-(1,1-dimethylethyl)-N-propylamino, N-butyl-N-(1-methylethyl)amino, N-(1-methylethyl)-N-(1-methylpropyl)amino, N-(1-methylethyl)-N-(2methylpropyl)amino, N-(1,1-dimethylethyl)-N-(1-methylethyl)amino, N-butyl-N-(1-methylpropyl)amino, N-butyl-N-(2-methylpropyl)amino, N-butyl-N-(1,1dimethylethyl)amino, N-(1-methylpropyl)-N-(2-methylpropyl)amino, N-(1,1-dimethylethyl)-N-(1-methylpropyl)amino and N-(1,1-dimethylethyl)-N-(2methylpropyl)amino;

[2,2-di(C₁-C₄-alkyl)-1-hydrazino], and the dialkylhydrazino moieties of [2,2-di(C₁-C₄-alkyl)-1-hydrazino]- C_1 - C_4 -alkyl: for example 2,2-dimethylhydrazino-1,2,2diethylhydrazino-1,2,2-dipropylhydrazino-1,2,2-di(1methylethyl)-1-hydrazino, 2,2-dibutylhydrazino-1,2,2di(1-methylpropyl)-1-hydrazino, 2,2-di(2methylpropyl)-1-hydrazino, 2,2-di(1,1-dimethylethyl)-1-hydrazino, 2-ethyl-2-methyl-1-hydrazino, 2-methyl-2-propyl-1-hydrazino, 2-methyl-2-(1-methylethyl)-1hydrazino, 2-butyl-2-methyl-1-hydrazino, 2-methyl-2-(1-methylpropyl)-1-hydrazino, 2-methyl-2-(2methylpropyl)-1-hydrazino, 2-(1,1-dimethylethyl)-2-2-ethyl-2-propyl-1-hydrazino, methyl-1-hydrazino, 2-ethyl-2-(1-methylethyl)-1-hydrazino, 2-buty1-2ethyl-1-hydrazino, 2-ethyl-2-(1-methylpropyl)-1-hy-2-ethyl-2-(2-methylpropyl)-1-hydrazino, drazino, 2-ethyl-2-(1,1-dimethylethyl)-1-hydrazino, 2-(1-methylethyl)-2-propyl-1-hydrazino, 2-butyl-2-propyl-1-hy-2-(1-methylpropyl)-2-propyl-1-hydrazino, drazino, 2-(2-methylpropyl)-2-propyl-1-hydrazino, 2-(1,1-dimethylethyl)-2-propyl-1-hydrazino, 2-butyl-2-(1-methylethyl)-1-hydrazino, 2-(1-methylethyl)-2-(1-methylpropyl)-1-hydrazino, 2-(1-methylethyl)-2-(2methylpropyl)-1-hydrazino, 2-(1,1-dimethylethyl)-2-(1-methylethyl)-1-hydrazino, 2-butyl-2-(1methylpropyl)-1-hydrazino, 2-butyl-2-(2methylpropyl)-1-hydrazino, 2-butyl-2-(1,1dimethylethyl)-1-hydrazino, 2-(1-methylpropyl)-2-(2methylpropyl)-1-hydrazino, 2-(1,1-dimethylethyl)-2-(1-methylpropyl)-1-hydrazino and 2 - (1, 1 dimethylethyl)-2-(2-methylpropyl)-1-hydrazino;

 $di(C_1-C_4-alkyl)$ amino- $C_1-C_4-alkyl$: $C_1-C_4-alkyl$ which is substituted by di(C₁-C₄-alkyl)amino as mentioned above, for example N,N-dimethylaminomethyl, N,Ndiethylaminomethyl, N,N-dipropylaminomethyl, N,Ndi(1-methylethyl)aminomethyl, N,N-dibutylaminom- 5 ethyl, N,N-di(1-methylpropyl)aminomethyl, N,N-di(2methylpropyl)aminomethyl, N,N-di(1,1-dimethylethyl) aminomethyl, N-ethyl-N-methylaminomethyl, N-methyl-N-propylaminomethyl, N-methyl-N-(1-methylethyl)aminomethyl, N-butyl-N-methylaminom- 10 N-methyl-N-(1-methylpropyl)aminomethyl, N-methyl-N-(2-methylpropyl)aminomethyl, dimethylethyl)-N-methylaminomethyl, N-ethyl-N-propylaminomethyl, N-ethyl-N-(1-methylethyl)aminomethyl, N-butyl-N-ethylaminomethyl, N-ethvl-N-(1- 15 methylpropyl)aminomethyl, N-ethyl-N-(2methylpropyl)aminomethyl, N-ethyl-N-(1,1-N-(1-methylethyl)-Ndimethylethyl)aminomethyl, propylaminomethyl, N-butyl-N-propylaminomethyl, N-(1-methylpropyl)-N-propylaminomethyl, N-(2-me- 20 thylpropyl)-N-propylaminomethyl, N-(1,1-dimethylethyl)-N-propylaminomethyl, N-butyl-N-(1-methylethyl)aminomethyl, N-(1-methylethyl)-N-(1methylpropyl)aminomethyl, N-(1-methylethyl)-N-(2methylpropyl)aminomethyl, N-(1,1-dimethylethyl)-N- 25 (1-methylethyl)aminomethyl, N-butyl-N-(1-N-butyl-N-(2methylpropyl)aminomethyl, methylpropyl)aminomethyl, N-butyl-N-(1,1dimethylethyl)aminomethyl, N-(1-methylpropyl)-N-(2-methylpropyl)aminomethyl, N-(1,1-dimethylethyl)- 30 N-(1-methylpropyl)aminomethyl, N-(1.1dimethylethyl)-N-(2-methylpropyl)aminomethyl, 2-(N, N-dimethylamino)ethyl, 2-(N,N-diethylamino)ethyl, 2-(N,N-dipropylamino)ethyl, 2-[N,N-di(1-methylethyl)amino]ethyl, 2-[N,N-dibutylamino]ethyl, 2-[N,N-35 di(1-methylpropyl)amino]ethyl, 2-[N,N-di(2-methyl-2-[N,N-di(1,1-dimethylethyl) propyl)aminolethyl, aminolethyl, 2-[N-ethyl-N-methylaminolethyl, 2-[Nmethyl-N-propylamino]ethyl, 2-[N-methyl-N-(1methylethyl)amino]ethyl, 2-[N-butyl-N-methylamino] 40 2-[N-methyl-N-(1-methylpropyl)aminolethyl, 2-[N-methyl-N-(2-methylpropyl)amino]ethyl, 2-[N-(1, 1-dimethylethyl)-N-methylamino]ethyl, 2-[N-ethyl-Npropylamino ethyl, 2-[N-ethyl-N-(1-methylethyl) amino ethyl, 2-[N-butyl-N-ethylamino]ethyl, 2-[N-45 ethyl-N-(1-methylpropyl)amino]ethyl, 2-[N-ethyl-N-(2-methylpropyl)aminolethyl, 2-[N-ethyl-N-(1,1dimethylethylamino ethyl, 2-[N-(1-methylethyl)-Npropylamino]ethyl, 2-[N-butyl-N-propylamino]ethyl, 2-[N-(1-methylpropyl)-N-propylamino]ethyl, 2-[N-(2-50 methylpropyl)-N-propylamino]ethyl, 2-[N-(1,1-dimethylethyl)-N-propylaminolethyl, 2-[N-butyl-N-(1-methylethyl)aminolethyl, 2-[N-(1-methylethyl)-N-(1methylpropyl)amino]ethyl, 2-[N-(1-methylethyl)-N-(2methylpropyl)amino]ethyl, 2-[N-(1,1-dimethylethyl)- 55 N-(1-methylethyl)aminolethyl, 2-[N-butyl-N-(1methylpropyl)aminolethyl, 2-[N-butyl-N-(2-2-[N-butyl-N-(1,1methylpropyl)amino]ethyl, dimethylethyl)aminolethyl, 2-[N-(1-methylpropyl)-N-(2-methylpropyl)aminolethyl, 2-[N-(1,1- 60 dimethylethyl)-N-(1-methylpropyl)aminolethyl, 2-[N-(1,1-dimethylethyl)-N-(2-methylpropyl)amino]ethyl, 3-(N,N-dimethylamino)propyl, 3-(N,N-diethylamino) propyl, 4-(N,N-dimethylamino)butyl and 4-(N,N-diethylamino)butyl; C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl: C_1 - C_4 -alkyl which is substi-

tuted by C₁-C₄-alkoxy as mentioned above, for example

methoxymethyl, ethoxymethyl, propoxymethyl, (1-methylethoxy)methyl, butoxymethyl, (1-methylpropoxy) (2-methylpropoxy)methyl, (1,1-dimethylethoxy)methyl, 2-(methoxy)ethyl, 2-(ethoxy)ethyl, 2-(propoxy)ethyl, 2-(1-methylethoxyl)ethyl, 2-(butoxy) ethyl, 2-(1-methylpropoxyl)ethyl, 2-(2-methylpropoxyl)ethyl, 2-(1,1-dimethylethoxyl)ethyl, 2-(methoxy)-propyl, 2-(ethoxy)propyl, 2-(propoxy)propyl, 2-(1-methylethoxyl)propyl, 2-(butoxy)propyl, 2-(1-methylpropoxyl)propyl, 2-(2-methylpropoxyl)propyl, 2-(1,1-dimethylethoxyl)propyl, 3-(methoxy)propyl, 3-(ethoxy)-propyl, 3-(propoxy)propyl, 3-(1-methylethoxy)propyl, 3-(butoxy)propyl, 3-(1-methylpropoxyl)propyl, 3-(2-methylpropoxy)propyl, 3-(1,1-dimethylethoxy)propyl, 2-(methoxy)butyl, 2-(ethoxy)butyl, 2-(propoxy)butyl, 2-(1-methylethoxyl)butyl, 2-(butoxy)butyl, 2-(1-methylpropoxyl)butyl, 2-(2-methylpropoxyl)butyl, 2-(1,1-dimethylethoxyl)butyl, 3-(methoxy)butyl, 3-(ethoxy)butyl, 3-(propoxy)butyl, 3-(1methylethoxyl)butyl. 3-(butoxy)butyl, methylpropoxyl)butyl, 3-(2-methylpropoxyl)butyl, 3-(1,1-dimethylethoxyl)butyl, 4-(methoxy)butyl, 4-(ethoxy)butyl, 4-(propoxy)butyl, 4-(1-methylethoxyl)butyl, 4-(butoxy)butyl, 4-(1-methylpropoxyl) butyl, 4-(2-methylpropoxyl)butyl and 4-(1,1-dimethylethoxyl)butyl;

C₁-C₄-alkylthio-C₁-C₄-alkyl: C₁-C₄-alkyl which is substituted by C₁-C₄-alkylthio as mentioned above, for example methylthiomethyl, ethylthiomethyl, propylthiomethyl, (1-methylethylthio)methyl, butylthiomethyl, (1-methylpropylthio)methyl, (2-methylpropylthio)methyl, (1,1-dimethylethylthio)methyl, 2-methylthioethyl, 2-ethylthioethyl, 2-(propylthio)ethyl, 2-(1-methylethylthio)ethyl, 2-(butylthio)ethyl, 2-(1-methylpropylthio) ethyl, 2-(2-methylpropylthio)ethyl, 2-(1,1-dimethylethylthio)ethyl, 2-(methylthio)propyl, 3-(methylthio) 2-(ethylthio)propyl, 3-(ethylthio)propyl, propyl, 3-(propylthio)propyl, 3-(butylthio)propyl, 4-(methylthio)butyl, 4-(ethylthio)butyl, 4-(propylthio)butyl and 4-(butylthio)butyl;

C₁-C₄-alkoxycarbonyl-C₁-C₄-alkyl: C₁-C₄-alkyl which is substituted by C₁-C₄-alkoxycarbonyl as mentioned above, for example methoxycarbonylmethyl, ethoxycarbonylmethyl, propoxycarbonylmethyl, (1-methylethoxycarbonyl)methyl, butoxycarbonylmethyl, (1-methylpropoxycarbonyl)methyl,

(2-methylpropoxycarbonyl)methyl, (1.1-dimethylethoxycarbonyl)methyl, 2-(methoxycarbonyl)ethyl, 2-(propoxycarbonyl)ethyl, 2-(ethoxycarbonyl)ethyl, 2-(1-methylethoxycarbonyl)ethyl, 2-(butoxycarbonyl) ethyl, 2-(1-methylpropoxycarbonyl)ethyl, 2-(2-methylpropoxycarbonyl)ethyl, 2-(1,1-dimethylethoxycarbonyl)ethyl, 2-(methoxycarbonyl)propyl, 2-(ethoxycarbonyl)propyl, 2-(propoxycarbonyl)propyl, 2-(1-methylethoxycarbonyl)propyl, 2-(butoxycarbonyl)propyl, 2-(1-methylpropoxycarbonyl)propyl, 2-(2methylpropoxycarbonyl)propyl, 2-(1,1-dimethylethoxycarbonyl)propyl, 3-(methoxycarbonyl)propyl, 3-(ethoxycarbonyl)propyl, 3-(propoxycarbonyl)propyl, 3-(1-methylethoxycarbonyl)propyl, 3-(butoxycarbonyl)propyl, 3-(1-methylpropoxycarbonyl)propyl, 3-(2methylpropoxycarbonyl)propyl, 3-(1,1-dimethylethoxycarbonyl)propyl, 2-(methoxycarbonyl)butyl, 2-(propoxycarbonyl)butyl, 2-(ethoxycarbonyl)butyl, 2-(1-methylethoxycarbonyl)butyl, 2-(butoxycarbonyl) butyl, 2-(1-methylpropoxycarbonyl)butyl, 2-(2-methylpropoxycarbonyl)butyl, 2-(1,1-dimethylethoxycarbo-

nyl)butyl, 3-(methoxycarbonyl)butyl, 3-(ethoxycarbonyl)butyl, 3-(propoxycarbonyl)butyl, 3-(1-methylethoxycarbonyl)butyl, 3-(butoxycarbonyl)butyl, 3-(2-methyl-propoxycarbonyl)butyl, 3-(1,1-dimethylethoxycarbo-5nyl)butyl, 4-(methoxycarbonyl)-butyl, 4-(ethoxycarbonyl)butyl, 4-(propoxycarbonyl)butyl, 4-(1-methylethoxycarbonyl)butyl, 4-(butoxycarbonyl)butyl, 4-(1-methylpropoxyl)butoxy, 4-(2-methylpropoxyl)butoxy and 4-(1,1-dimethylethoxycarbonyl)butyl;

C₁-C₄-alkoxy-C₂-C₄-alkoxy: C₂-C₄-alkoxy which is substituted by C₁-C₄-alkoxy as mentioned above, for example 2-(methoxy)ethoxy, 2-(ethoxy)ethoxy, 2-(propoxy)ethoxy, 2-(1-methylethoxy)ethoxy, 2-(butoxy) 15 ethoxy, 2-(1-methylpropoxyl)ethoxy, 2-(2-methylpropoxy)ethoxy, 2-(1,1-dimethylethoxyl)ethoxy, 2-(methoxy)propoxy, 2-(ethoxy)propoxy, 2-(propoxy) propoxy, 2-(1-methylethoxyl)propoxy, 2-(butoxy)propoxy, 2-(1-methylpropoxy)propoxy, 2-(2-methylpro- 20 2-(1,1-dimethylethoxyl)propoxy, 3-(methoxy)propoxy, 3-(ethoxy)propoxy, 3-(propoxy) propoxy, 3-(1-methylethoxyl)propoxy, 3-(butoxy)propoxy, 3-(1-methylpropoxy)propoxy, 3-(2-methylpro-3-(1,1-dimethylethoxy)propoxy, 25 poxyl)propoxy, 2-(methoxy)butoxy, 2-(ethoxy)butoxy, 2-(propoxy)butoxy, 2-(1-methylethoxy)butoxy, 2-(butoxy)butoxy, 2-(1-methylpropoxyl)butoxy, 2-(2-methylpropoxyl)butoxy, 2-(1,1-dimethylethoxyl)butoxy, 3-(methoxy)butoxy, 3-(ethoxy)-butoxy, 3-(propoxy)butoxy, 3-(1-me-30) thylethoxy)butoxy, 3-(butoxy)butoxy, 3-(1methylpropoxyl)butoxy, 3-(2-methylpropoxyl)butoxy, 3-(1,1-dimethylethoxyl)butoxy, 4-(methoxy)butoxy, 4-(ethoxy)butoxy, 4-(propoxy)butoxy, 4-(1-methylethoxyl)butoxy, 4-(butoxy)butoxy, 4-(1-methylpro- 35 poxy)butoxy, 4-(2-methylpropoxy)butoxy and 4-(1,1dimethylethoxyl)butoxy;

C₂-C₆-alkanediyl: for example ethane-1,2-diyl, propane-1,3-diyl, butane-1,4-diyl, pentane-1,5-diyl and hexane-1,6-diyl;

C₃-C₈-cycloalkyl: for example cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl;

All phenyl rings are preferably unsubstituted or have attached to them one to three halogen atoms and/or a nitro group, a cyano radical and/or one or two methyl, trifluorom- 45 ethyl, methoxy or trifluoromethoxy substituents.

Preference is given to the 3-heterocyclyl-substituted benzoyl derivatives of the formula I where the variables have the following meanings:

 $R^1,\ R^2$ are hydrogen, nitro, halogen, cyano, $C_1\text{-}C_8\text{-}alkyl,\ 50$ $C_1\text{-}C_8\text{-}haloalkyl,\ C_1\text{-}C_6\text{-}alkoxy,\ C_1\text{-}C_6\text{-}haloalkoxy,\ }C_1\text{-}C_6\text{-}alkylthio,\ }C_1\text{-}C_6\text{-}haloalkylsulfinyl,\ }C_1\text{-}C_8\text{-}alkylsulfinyl,\ }C_1\text{-}C_8\text{-}alkylsulfonyl\ }$ or $C_1\text{-}C_8\text{-}haloalkylsulfonyl;\ }$

 R^3 is hydrogen, halogen or C_1 - C_8 -alkyl;

R⁴, R⁵ are hydrogen, halogen, cyano, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, di(C₁-C₄-alkoxy)-C₁-C₄-alkyl, di(C₁-C₄-alkyl)-amino-C₁-C₄-alkyl, [2,2-di(C₁-C₄-alkyl)-1-hydrazino]-C₁-C₄-alkyl, C₁-C₈-alkyliminooxy-C₁-C₄-alkyl, C₁-C₄-alkoxycarbonyl-C₁-C₄-alkyl, C₁-C₄-60 alkylthio-C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkoxy, C₃-C₈-cycloalkyl, C₁-C₄-alkoxy, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkylthio, di(C₁-C₄-alkyl)amino, COR⁶, phenyl or benzyl, it being possible for the two last-mentioned substituents to be fully or partially halogenated and/or to have attached to them one to three of the following groups:

12

nitro, cyano, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy;

or

R⁴ and R⁵ together form a C₂-C₆-alkanediyl chain which can be mono- to tetrasubstituted by C₁-C₄-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁-C₄-alkyl;

or

R⁴ and R⁵ together with the corresponding carbon form a carbonyl or thiocarbonyl group;

R⁶ is C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-alkoxy-C₂-C₄-alkoxy, C₁-C₄-haloalkoxy, C₃-C₆-alkenyloxy or NR⁷R⁸;

 R^7 is hydrogen or C_1 - C_4 -alkyl;

 R^8 is C_1 - C_4 -alkyl;

X is O, S, NR⁹, CO or CR¹⁰R¹¹;

Y is O, S, NR¹², CO or CR¹³R¹⁴;

 R^9 , R^{12} are hydrogen or C_1 - C_4 -alkyl;

R¹⁰, R¹¹, R¹³, R¹⁴ are hydrogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxycarbonyl, C₁-C₄-haloalkoxycarbonyl or CONR⁷R⁸;

or

 R^4 and R^9 or R^4 and R^{10} or R^5 and R^{12} or R^5 and R^{13} together form a C_2 - C_6 -alkanediyl chain which can be monot to tetrasubstituted by C_1 - C_4 -alkyl and/or interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl;

 R^{15} is a pyrazole of the formula II which is linked in the 4-position

Π

where

 R^{16} is C_1 - C_6 -alkyl;

Z is H or SO_2R^{17} ;

R¹⁷ is C₁-C₄-alkyl, C₁-C₄-haloalkyl, phenyl or phenyl which is partially or fully halogenated and/or has attached to it one to three of the following groups: nitro, cyano, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄haloalkoxy;

R¹⁸ is hydrogen or C₁-C₆-alkyl;

where X and Y are not simultaneously oxygen or sulfur; with the exception of 4-[2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl]-1-ethyl-5-hydroxy-1H-pyrazole, 4-[2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole, 4-[2-chloro-3-(5-cyano-4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole, 4-[2-chloro-3-(4,5-dihydrothiazol-2-yl)-4-methylsulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole and 4-[2-chloro-3-(thiazoline-4,5-dion-2-yl)-4-methylsulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole;

or the agriculturally useful salts thereof.

With a view to the use of the compou

With a view to the use of the compounds of the formula I according to the invention as herbicides, the variables preferably have the following meanings, in each case alone or in combination:

R¹, R² are nitro, halogen, cyano, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₆-alkylthio, $\mathrm{C}_1\text{-}\mathrm{C}_6\text{-haloalkylthio}$, $\mathrm{C}_1\text{-}\mathrm{C}_6\text{-alkylsulfinyl}$, $\mathrm{C}_1\text{-}\mathrm{C}_6\text{-haloalkylthio}$ loalkylsulfinyl, C₁-C₆-alkylsulfonyl or haloalkylsulfonyl; especially preferably nitro, halogen 5 such as, for example, chlorine and bromine, C₁-C₆-alkyl such as, for example, methyl and ethyl, C₁-C₆-alkoxy such as, for example, methoxy and ethoxy, C1-C6-haloalkyl such as, for example, difluoromethyl and trifluoromethyl, C₁-C₆-alkylthio such as, for example, methylthio and ethylthio, C₁-C₆-alkylsulfinyl such as, for example, methylsulfinyl and ethylsulfinyl, C1-C6-alkylsulfonyl such as, for example, methylsulfonyl, ethylsulfonyl and propylsulfonyl or C₁-C₆-haloalkylsulfonyl such as, for example, trifluoromethylsulfonyl and pentafluoroethylsulfonyl;

R³ is hydrogen;

R⁴, R⁵ are hydrogen, halogen, cyano, nitro, C₁-C₄-alkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, $di(C_1-C_4-alkoxy)-C_1-C_4$ alkyl, $di(C_1-C_4-alkyl)$ amino- $C_1-C_4-alkyl$, [2,2- $di(C_1-C_4-20)$ alkyl)hydrazino-1]- C_1 - C_4 -alkyl, C_1 - C_6 -alkyliminooxy-C₁-C₄-alkyl, C₁-C₄-alkoxycarbonyl-C₁-C₄-alkyl, C₁-C₄alkylthio-C₁-C₄-alkyl, C₁-C₄-haloalkyl, cyanoalkyl, C_3 - C_8 -cycloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 $alkoxy-C_2-C_4-alkoxy, C_1-C_4-haloalkoxy, C_1-C_4-alkylthio, \ \ 25$ C₁-C₄-haloalkylthio, di(C₁-C₄-alkyl)amino, COR⁶, phenyl or benzyl, it being possible for the two last-mentioned substituents to be partially or fully halogenated and/or to have attached to them one to three of the following groups: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy 30 or C_1 - C_4 -haloalkoxy;

 R^4 and R^5 together form a $\mathrm{C}_2\text{-}\mathrm{C}_6$ -alkanediyl chain which can be mono- to tetra substituted by $\mathrm{C}_1\text{-}\mathrm{C}_4\text{-}$ alkyl and/or which can be interrupted by oxygen or by a nitrogen which is 35 unsubstituted or substituted by C_1 - C_4 -alkyl;

R⁴ is especially preferably hydrogen, C₁-C₄-alkyl, C₁-C₄haloalkyl, C₁-C₄-alkoxycarbonyl or CONR⁷R⁸;

R⁵ is especially preferably hydrogen or C₁-C₄-alkyl;

R⁴ and R⁵ especially preferably form a C₂-C₆-alkanediyl chain which can be mono- to tetrasubstituted by C₁-C₄alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 alkyl;

R⁶ is C₁-C₄-alkyl, C₁-C₄-alkoxy or NR⁷R⁸;

R⁷ is hydrogen or C₁-C₄-alkyl;

 R^8 is C_1 - C_4 -alkyl;

X is O, S, NR⁹, CO or CR¹⁰R¹¹; Y is O, S, NR¹² or CR¹³R¹⁴;

 R^9, R^{12} are hydrogen or $C_1\text{-}C_4\text{-}alkyl;$ $R^{10},\ R^{11},\ R^{13},\ R^{14}$ are hydrogen, $C_1\text{-}C_4\text{-}alkyl,\ C_1\text{-}C_4\text{-}ha-}$ loalkyl, C₁-C₄-alkoxycarbonyl, C₁-C₄-haloalkoxycarbonyl or CONR⁷R⁸;

R⁴ and R⁹ or R⁴ and R¹⁰ or R⁵ and R¹² or R⁵ and R¹³ together form a C₂-C₆-alkanediyl chain which can be mono- to tetrasubstituted by C₁-C₄-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁-C₄-alkyl;

 R^{16} is C_1 - C_6 -alkyl;

especially preferably methyl, ethyl, propyl, 2-methylpropyl, or butyl;

Z is H or SO_2R^{17}

 R^{17} is C_1 - C_4 -alkyl, phenyl or phenyl which is partially or fully 65 halogenated and/or has attached to it one to three of the following groups:

14

nitro, cyano, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy or C₁-C₄-haloalkoxy;

 R^{18} is hydrogen or C_1 - C_6 -alkyl;

especially preferably hydrogen or methyl.

The following embodiments of the 3-heterocyclyl-substituted benzoyl derivatives of the formula I must be empha-

1. In a preferred embodiment of the 3-heterocyclyl-substituted benzoyl derivatives of the formula I, Z is SO₂R¹⁷.

Especially preferred are the 3-heterocyclyl-substituted benzoyl derivatives of the formula I, where R¹⁸ is hydro-

Also especially preferred are 3-heterocyclyl-substituted benzoyl derivatives of the formula I, where R¹⁸ is

Particularly preferred are 3-heterocylyl-substituted benzoyl derivatives of the formula I, where R^{17} is C_1 - C_4 alkyl.

2. In a further preferred embodiment of the 3-heterocyclylsubstituted benzoyl derivatives of the formula I, Z is hydro-

Especially preferred are 3-heterocyclyl-substituted benzoyl derivatives of the formula I where X is oxygen and Y is CR13R14.

Particularly preferred are 3-heterocyclyl-substituted benzoyl derivatives of the formula I where

R⁴ is halogen, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₁-C₄-alkoxycarbonyl-C₁-C₄-alkyl, C₄-alkyl, $C_1\hbox{-} C_4\hbox{-}alkyl thio\hbox{-} C_1\hbox{-} C_4\hbox{-}alkyl, \qquad C_1\hbox{-} C_4\hbox{-}haloalkyl,$ C_1 - C_4 -cyanoalkyl, C_3 - C_8 -cycloalkyl, C_1 - C_4 alkoxy, C₁-C₄-Alkoxy-C₂-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkylthio, di(C₁-C₄-alkyl)amino, COR⁶, phenyl or benzyl, it being possible for the two last-mentioned substituents to be partially or fully halogenated and/or to have attached to them one to three of the following groups:

nitro, cyano, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4alkoxy or C1-C4-haloalkoxy;

 R^5 is hydrogen or C_1 - C_4 -alkyl;

R⁴ and R⁵ together form a C₂-C₆-alkanediyl chain which can be mono- to tetrasubstituted by C_1 - C_4 alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl;

50

60

 $\ensuremath{R^5}$ and $\ensuremath{R^{13}}$ together form a $\ensuremath{C_2\text{-}C_6\text{-alkanediyl}}$ chain which can be mono- to tetrasubstituted by C_1 - C_4 alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁-C₄-alkyl.

Extraordinarily preferred are 3-heterocyclyl-substituted benzoyl derivatives of the formula I

 R^4 is C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxycarbonyl or CONR⁷R⁸;

 R^5 is hydrogen or C_1 - C_4 -alkyl;

R⁴ and R⁵ together form a C₂-C₆-alkanediyl chain which can be mono- to tetrasubstituted by C₁-C₄alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl;

R5 and R13 together form a C2-C6-alkanediyl chain which can be mono- to tetrasubstituted by C₁-C₄-

alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl.

Especially extraordinarily preferred are 3-heterocyclyl-substituted benzoyl derivatives of the formula 5 I where R¹⁸ is hydrogen.

Also particularly preferred are 3-heterocyclyl-substituted benzoyl derivatives of the formula I where R⁴ and R⁵ are hydrogen.

Extraordinarily preferred are 3-heterocyclyl-substituted benzoyl derivatives of the formula I where R¹⁸ is hydrogen.

Especially extraordinarily preferred are 3-heterocyclyl-substituted benzoyl derivatives of the formula I where

 R^1 is nitro, C_1 - C_6 -alkyl such as, for example, methyl and ethyl, C_1 - C_6 -alkoxy such as, for example, methoxy and ethoxy, C_1 - C_6 -haloalkyl such as, for example, difluoromethyl and trifluoromethyl, C_1 - C_6 -alkylsulfonyl such as, for 20 example, methylsulfonyl, ethylsulfonyl and propylsulfonyl, or C_1 - C_6 -haloalkylsulfonyl such as, for example, trifluoromethylsulfonyl and pentafluoroethylsulfonyl;

Also especially extraordinarily preferred are 3-heterocyclyl-substituted benzoyl derivatives of the formula I where

R² is nitro, halogen such as, for example, chlorine and bromine, C₁-C₆-alkyl such as, for example, methyl and ethyl, C₁-C₆-haloalkyl such as, for example, difluoromethyl and trifluoromethyl, C₁-C₆-alkylthio such as, for example, methylthio and ethylthio, C₁-C₆-alkylsulfinyl such as, for example, methylsulfinyl and ethylsulfinyl, C₁-C₆-alkylsulfonyl such as, for example, methylsulfonyl, ethylsulfonyl and propylsulfonyl, or C₁-C₆-haloalkylsulfonyl such as, for example, trifluoromethylsulfonyl and pentafluoroethylsulfonyl.

Also especially extraordinarily preferred is 4-[2-40 chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methyl-sulfonylbenzoyl]-1-methyl-5-hydroxy-1H-pyrazole.

Also especially extraordinarily preferred are the agriculturally useful salts of 4-(2-chloro-3-(4,5-45 dihydroisoxazol-3-yl)-4-methylsulfonylbenzovl)-1-methyl-5-hydroxy-1H-pyrazole, in particular the alkali metal salts, such as, for example, lithium, sodium and potassium, and the ammonium salts, it being possible in this 50 case, if desired, for one to four hydrogen atoms to be replaced by C_1 - C_4 -alkyl, hydroxy- C_1 - C_4 alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, hydroxy-C C₄-alkoxy-C₁-C₄-alkyl, phenyl or benzyl, prefammonium, dimethylammonium, 55 diisopropylammonium, tetramethylammonium, tetrabutylammonium, 2-(2-hydroxyeth-1-oxy) eth-1-ylammonium, di(2-hydroxyeth-1-yl)ammonium, trimethylbenzylammonium.

Also extraordinarily preferred are 3-heterocyclyl-substituted benzoyl derivatives of the formula I where R¹⁸ is methyl.

Especially extraordinarily preferred are 3-heterocyclyl-substituted benzoyl derivatives of the formula I where

R¹ is nitro, C₁-C₆-alkyl such as, for example, methyl and ethyl, C₁-C₆-alkoxy such as, for

16

example, methoxy and ethoxy, C_1 - C_6 -haloalkyl such as, for example, difluoromethyl and trifluoromethyl, C_1 - C_6 -alkylsulfonyl such as, for example, methylsulfonyl, ethylsulfonyl and propylsulfonyl, or C_1 - C_6 -haloalkylsulfonyl, for example trifluoromethylsulfonyl and pentafluoroethylsulfonyl.

Also especially extraordinarily preferred are 3-heterocyclyl-substituted benzoyl derivatives of the formula I where

 $\rm R^2$ is nitro, halogen such as, for example, chlorine and bromine, $\rm C_1\text{-}C_6\text{-}alkyl$ such as, for example, methyl and ethyl, $\rm C_1\text{-}C_6\text{-}haloalkyl$ such as, for example, difluoromethyl and trifluoromethyl, $\rm C_1\text{-}C_6\text{-}alkylthio$ such as, for example, methylthio and ethylthio, $\rm C_1\text{-}C_6\text{-}alkylsulfinyl$ such as, for example, methylsulfinyl and ethylsulfinyl, $\rm C_1\text{-}C_6\text{-}alkylsulfonyl$ such as, for example, methylsulfonyl, ethylsulfonyl and propylsulfonyl, or $\rm C_1\text{-}C_6\text{-}haloalkylsulfonyl}$ such as, for example, trifluoromethylsulfonyl and pentafluoroethylsulfonyl.

Also especially preferred are 3-heterocyclyl-substituted benzoyl derivatives of the formula I where

X is S, NR⁹, CO or CR¹⁰R¹¹;

10

Y is O, S, NR¹² or CO.

Particularly preferred are 3-heterocyclyl-substituted benzoyl derivatives of the formula I where R¹⁸ is hydrogen.

Also particularly preferred are 3-heterocyclyl-substituted benzoyl derivatives of the formula I where R^{18} is C_1 - C_6 -alkyl.

Extraordinarily preferred are 3-heterocyclyl-substituted benzoyl derivatives of the formula I where

 R^4 is halogen, cyano, nitro, $C_1\text{-}C_4\text{-}alkyl,\ C_1\text{-}C_4\text{-}alkyl,\ C_1\text{-}C_4\text{-}alkyl,\ C_1\text{-}C_4\text{-}alkyl,\ C_1\text{-}C_4\text{-}alkyl,\ C_1\text{-}C_4\text{-}alkyl,\ C_1\text{-}C_4\text{-}haloalkyl,\ C_1\text{-}C_4\text{-}cyanoalkyl,\ C_3\text{-}C_8\text{-}cycloalkyl,\ C_1\text{-}C_6\text{-}alkoxy,\ C_1\text{-}C_4\text{-}alkoxy\text{-}C_1\text{-}C_4\text{-}alkoxy,\ C_1\text{-}C_4\text{-}haloalkoxy,\ C_1\text{-}C_4\text{-}alkylthio,\ C_1\text{-}C_4\text{-}haloalkylthio,\ di(C_1\text{-}C_4\text{-}alkyl)amino,\ COR^6,\ phenyl\ or\ benzyl,\ it\ being\ possible\ for\ the\ two\ last-mentioned\ substituents\ to\ be\ partially\ or\ fully\ halogenated\ and/or\ to\ have\ attached\ to\ them\ one\ to\ three\ of\ the\ following\ groups:$

nitro, cyano, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

 R^5 is hydrogen or C_1 - C_4 -alkyl;

or

 R^4 and R^5 together form a C_2 - C_6 -alkanediyl chain which can be mono- to tetrasubstituted by C_1 - C_4 -alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl;

or R⁴ and R⁹ or R⁴ and R¹⁰ or R⁵ and R¹² or R⁵ and R¹³ together form a C₂-C₆-alkanediyl chain which can be mono- to tetrasubstituted by C₁-C₄-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁-C₄-alkyl

Also particularly preferred are 3-heterocyclyl-substituted benzoyl derivatives of the formula I where

X is S, NR⁹ or CO

or

Y is O, NR¹² or CO.

No.

 R^5

Extraordinarily preferred are 3-heterocyclyl-substituted benzoyl derivatives of the formula I where

R⁴ is halogen, cyano, nitro, C₁-C₄-alkyl, C₁-C₄ $alkoxy\hbox{-} C_1\hbox{-} C_4\hbox{-}alkyl, \quad C_1\hbox{-} C_4\hbox{-}alkoxy\hbox{carbonyl-} C_1\hbox{-}$ $C_4\text{-alkyl},\ C_1\text{-}C_4\text{-alkylthio-}C_1\text{-}C_4\text{-alkyl},\ C_1\text{-}C_4\text{-ha-} \ \ ^5$ loalkyl, C_1 - C_4 -cyanoalkyl, C_3 - C_8 -cycloalkyl, C_1 - C_6 -alkoxy, C_1 - C_4 -alkoxy- C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -haloalkylthio, di(C₁-C₄-alkyl)amino, COR⁶, phenyl or benzyl, it being possible for the two last-mentioned substituents to be partially or fully halogenated and/or to have attached to them one to three of the following groups:

nitro, cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy, C_1 - C_4 -haloalkoxy;

 R^5 is hydrogen or C_1 - C_4 -alkyl;

or

 R^4 and R^5 together form a $\mathrm{C_2\text{-}C_6\text{--}alkanediyl}$ chain which can be mono- to tetrasubstituted by C₁-C₄alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl;

 R^4 and R^9 or R^4 and R^{10} or R^5 and R^{12} or R^5 and R^{13} together form a C_2 - C_6 -alkanediyl chain which can be mono- to tetrasubstituted by C₁-C₄-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C1-C4-

Particularly extraordinarily preferred are the compounds Ia1 ($\hat{=}$ I where R^1 =Cl, R^2 =SO₂CH₃, R^3 =H, R^{16} , R¹⁸—CH₃, Z—H), in particular the compounds of Table 1.

$$\begin{array}{c} \text{Ia1} \\ \text{H}_{3}\text{C} \\ \text{N} \\ \text{OH} \\ \text{CH}_{3} \end{array}$$

TABLE 1

	12	IDL/L/ I			_
No.	X	\mathbb{R}^4	\mathbb{R}^5	Y	
Ia1.1	CH ₂	Н	CH ₃	О	50
Ia1.2	CH ₂	H	H	O	
Ia1.3	$C(CH_3)_2$	H	H	O	
Ia1.4	CH_2	H	C_2H_5	O	
Ia1.5	CH_2	CH_3	CH_3	O	
Ia1.6	CH(CH ₃)	H	CH_3	O	
Ia1.7	$CH(C_2H_5)$	H	CH ₃	O	55
Ia1.8	$CH[CH(CH_3)_2]$	H	Н	O	33
Ia1.9	CH ₂	H	$CH(CH_3)_2$	O	
Ia1.10	$CH(C_2H_5)$	H	C_2H_5	O	
Ia1.11	—CH—(C	CH ₂) ₄ —	H		
Ia1.12	C=O	CH ₃	CH_3	O	
Ia1.13	C=O	Н	C_2H_5	O	
Ia1.14	C=O	C_2H_5	C_2H_5	O	60
Ia1.15	C=O	H	H	O	
Ia1.16	C=O	H	CH ₃	O	
Ia1.17	CH_2	H	CH ₃	S	
Ia1.18	$C(CH_3)_2$	H	Н	S	
Ia1.19	CH ₂	H	C_2H_5	S	
Ia1.20	CH_2	CH ₃	CH ₃	S	65
Ia1.21	CH(CH ₃)	Н	CH_3	S	

TABLE 1-continued

X

	Ia1.22	$CH(C_2H_5)$	Н	CH_3	S
5	Ia1.23	$CH(C_2H_5)$	H	C_2H_5	S
		CII(C ₂ II ₅)			S
	Ia1.24		-(CH ₂) ₄	H	
	Ia1.25	$CH[CH(CH_3)_2]$	H	H	S
	Ia1.26	CH_2	H	$CH(CH_3)_2$	S
	Ia1.27	CH_2	H	CH ₃	NH
	Ia1.28	CH ₂	H	H	NH
10	Ia1.29	$C(CH_3)_2$	H	H	NH
10	Ia1.30	CH ₂	H	C_2H_5	NH
	Ia1.31	CH ₂	CH ₃	CH ₃	NH
	Ia1.32	CH(CH ₃)	H	CH ₃	NH
	Ia1.33	$CH(C_2H_5)$	H	CH_3	NH
	Ia1.34	$CH(C_2H_5)$	H	C_2H_5	NH
15	Ia1.35	—СН-	-(CH ₂) ₄	H	NH
13	Ia1.36	$CH[CH(CH_3)_2]$	H	H	NH
	Ia1.37	CH ₂	H	$CH(CH_3)_2$	NH
	Ia1.38	CH ₂	H	CH ₃	NCH ₃
	Ia1.39	CH ₂	H	Н	NCH ₃
	Ia1.40	$C(CH_3)_2$	H	Н	NCH ₃
20	Ia1.41	CH_2	H	C_2H_5	NCH_3
20	Ia1.42	CH_2	CH_3	CH_3	NCH_3
	Ia1.43	CH(CH ₃)	Η	CH ₃	NCH_3
	Ia1.44	$CH(C_2H_5)$	H	CH ₃	NCH ₃
	Ia1.45	$CH[CH(CH_3)_2]$	H	н	NCH ₃
	Ia1.46	CH ₂	H	CH(CH ₃) ₂	NCH ₃
	Ia1.47	$CH(C_2H_5)$	H	C_2H_5	NCH ₃
25	Ia1.48		–(CH ₂) ₄ ––	H	NCH ₃
	Ia1.49	CH_2	H	CH_3	NC ₂ H ₅
	Ia1.50	CH ₂	H	H	NC_2H_5
	Ia1.51	$C(CH_3)_2$	H	H	NC_2H_5
	Ia1.52	CH_2	H	C_2H_5	NC_2H_5
	Ia1.53	CH_2	CH ₃	CH_3	NC_2H_5
30	Ia1.54	CH(CH ₃)	H	CH ₃	NC_2H_5
	Ia1.55	$CH(C_2H_5)$	H	CH ₃	NC_2H_5
	Ia1.56	$CH[CH(CH_3)_2]$	H	н	NC_2H_5
	Ia1.57	CH ₂	H	CH(CH ₃) ₂	NC_2H_5
	Ia1.58	$CH(C_2H_5)$	H		NC_2H_5
				C_2H_5	
	Ia1.59		-(CH ₂) ₄	H	NC_2H_5
35	Ia1.60	CH_2	=0		S
	Ia1.61	$CH(CH_3)$	=0		S
	Ia1.62	$CH(C_2H_5)$	=0		S
	Ia1.63	$CH[CH(CH_3)_2]$	<u>=</u> 0		S
	Ia1.64	$C(CH_3)_2$	<u></u> 0		S
	Ia1.65	$CCH_3(C_2H_5)$	=0		S
	Ia1.66	CCH ₃ [CH(CH ₃) ₂]	=O		S
40	Ia1.67	CH ₂	=0		NH
	Ia1.68	CH(CH ₃)	=0		NH
			=0		
	Ia1.69	CH(C ₂ H ₅)			NH
	Ia1.70	$CH[CH(CH_3)_2]$	=0		NH
	Ia1.71	$C(CH_3)_2$	=0		NH
	Ia1.72	$CCH_3(C_2H_5)$	=O		NH
45	Ia1.73	$CCH_3[CH(CH_3)_2]$	=0		NH
	Ia1.74	CH_2	=O		NCH_3
	Ia1.75	CH(CH ₃)	=0		NCH_3
	Ia1.76	$CH(C_2H_5)$	=O		NCH_3
	Ia1.77	$CH[CH(CH_3)_2]$	=O		NCH_3
	Ia1.78	C(CH ₃) ₂	=0		NCH ₃
50	Ia1.79	$CCH_3(C_2H_5)$	=0		NCH ₃
50	Ia1.80	$CCH_3[CH(CH_3)_2]$	=0		NCH ₃
				Н	
	Ia1.81	0	COOCH3		CH ₂
	Ia1.82	0	COOC ₂ H ₅	H	CH ₂
	Ia1.83	O	CONHCH ₃	H	CH ₂
	Ia1.84	O	$CON(CH_3)_2$	H	CH_2
55	Ia1.85	O	CONHC ₂ H ₅	H	CH_2
00	Ia1.86	O	$CON(C_2H_5)_2$	H	CH_2
	Ia1.87	O	CH ₃	$_{ m H}$	CH_2
	Ia1.88	O	C_2H_5	H	CH_2
	Ia1.89	ŏ	CH(CH ₃) ₂	Н	CH ₂
	Ia1.90	Ö	COC_2H_5	Н	CH ₂
60	Ia1.91	0	CH ₂ CN	H	CH_2
30	Ia1.92	0	$CH_2N(CH_3)_2$	H	CH_2
	Ia1.93	O	$CH_2ON=C(CH_3)_2$	H	CH_2
	Ia1.94	O	$CH(OC_2H_5)_2$	H	CH_2
	Ia1.95	O	$CH(OCH_3)_2$	H	CH_2
	Ia1.96	O	CH ₃	CH_3	CH_2
	Ia1.97	O	CH ₃	C_2H_5	CH_2^2
65	Ia1.98	O	C_2H_5	C_2H_5	CH ₂
-		O	—(CH ₂) ₄ -	2115	
	Ia1.99	U	$-(CH_2)_4$	_	CH_2

20 TABLE 2-continued

No.	X	\mathbb{R}^4	R^5	Y
Ia1.100	O	—(CH ₂) ₂ —O—(0	CH ₂) ₂ —	CH ₂
Ia1.101	O	H	—(CH ₂) ₃	—СН—
Ia1.102	O	H	—(CH ₂) ₄	—СН—
Ia1.103	O	CH ₃	Н	$CHCH_3$
Ia1.104	S	=0		0
Ia1.105	CH_2	=S		S
Ia1.106	$CH(CH_3)$	=S		S
Ia1.107	$CH(C_2H_5)$	=S		S
Ia1.108	$C(CH_3)_2$	=S		S
Ia1.109	O	=O		NH
Ia1.110	O	<u>=</u> 0		NCH_3
Ia1.111	O	CH ₃	H	NH
Ia1.112	O	C_2H_5	H	NH
Ia1.113	O	CH ₃	CH_3	NH
Ia1.114	O	C_2H_5	C_2H_5	NH
Ia1.115	O	CH ₃	Н	NCH_3
Ia1.116	O	C_2H_5	H	NCH ₃
Ia1.117	O	CH ₃	CH_3	NCH ₃
Ia1.1.18	O	C_2H_5	C_2H_5	NCH ₃
Ia1.119	NH	=0		NH
Ia1.120	NH	=0		NCH ₃
Ia1.121	NCH ₃	=0		NH
Ia1.122	NCH_3	=0		NCH_3
Ia1.123	NC_2H_5	=0		NH
Ia1.124	NC_2H_5	= 0		NC_2H_5

In addition, the following benzoyl derivatives of the formula I are particularly extraordinarily preferred:

The compounds Ia2.1-Ia2.124, which differ from the corresponding compounds Ia1.1-Ia1.124 by the fact that R^{16} is ethyl and R^{18} is hydrogen.

Also particularly extraordinarily preferred are the compounds Ib1 ($\stackrel{\circ}{=}$ I where R¹, R²—Cl, R³—H, R¹⁶, R¹⁸—CH₃, Z—H) in particular the compounds of Table 2

$$H_3C$$
 O
 Cl
 N
 N
 Cl
 R^4
 R^5
 Cl
 Cl
 Cl
 R^5

TABLE 2

No.	X	\mathbb{R}^4	\mathbb{R}^5	Y
Ib1.1	CH ₂	Н	CH ₃	0
Ib1.2	CH_2	H	Н	O
Ib1.3	$C(CH_3)_2$	H	H	O
Ib1.4	CH ₂	H	C_2H_5	O
Ib1.5	CH_2	CH_3	$\mathrm{CH_3}$	O

	No.	X	R^4	R^5	Y
	Ib1.6	CH(CH ₃)	Н	CH ₃	0
5	Ib1.7	$CH(C_2H_5)$	Н	CH ₃	О
	Ib1.8	$CH[CH(CH_3)_2]$	H	H	O
	Ib1.9	CH_2	Н	$CH(CH_3)_2$	0
	Ib1.10	$CH(C_2H_5)$	Н	C_2H_5	0
	Ib1.11	—CH—(CI	H ₂) ₄ — CH ₃	H CH ₃	0
10	Ib1.12 Ib1.13	C=0	Сп ₃ Н	C_2H_5	0
10	Ib1.14	C=O	C_2H_5	C_2H_5	ŏ
	Ib1.15	C=O	H	H	O
	Ib1.16	C=O	H	CH_3	O
	Ib1.17	CH ₂	H	CH ₃	S
	Ib1.18	CH_2 $C(CH_3)_2$	H H	H H	S S
15	Ib1.19 Ib1.20	C(CH ₃) ₂ CH ₂	H	C_2H_5	S
	Ib1.21	CH ₂	CH ₃	CH ₃	S
	Ib1.22	CH(CH ₃)	н	CH ₃	S
	Ib1.23	$CH(C_2H_5)$	Н	CH_3	S
	Ib1.24	$CH(C_2H_5)$	H	C_2H_5	S
20	Ib1.25		H ₂) ₄ —	H H	S S
	Ib1.26 Ib1.27	CH[CH(CH ₃) ₂] CH ₂	H H	CH(CH ₃) ₂	S
	Ib1.28	CH ₂	Н	CH ₃	NH
	Ib1.29	CH_2	Н	Н	NH
	Ib1.30	$C(CH_3)_2$	H	H	NH
25	Ib1.31	CH ₂	H	C ₂ H ₅	NH
25	Ib1.32 Ib1.33	CH ₂ CH(CH ₃)	CH ₃ H	CH₃ CH₃	NH NH
	Ib1.34	$CH(C_2H_5)$	H	CH ₃	NH
	Ib1.35	$CH(C_2H_5)$	H	C_2H_5	NH
	Ib1.36	—CH—(CI		H	NH
	Ib1.37	$CH[CH(CH_3)_2]$	H	Н	NH
30	Ib1.38	CH ₂ CH ₂	H H	CH(CH ₃) ₂ CH ₃	NH NCH ₃
	Ib1.39 Ib1.40	CH ₂ CH ₂	н Н	H	NCH ₃
	Ib1.41	$C(CH_3)_2$	H	Н	NCH ₃
	Ib1.42	CH_2	Н	C_2H_5	NCH_3
	Ib1.43	CH_2	CH ₃	CH ₃	NCH_3
35	Ib1.44	CH(CH ₃)	H H	CH_3	NCH_3 NCH_3
	Ib1.45 Ib1.46	$CH(C_2H_5)$ $CH[CH(CH_3)_2]$	H	CH ₃ H	NCH ₃
	Ib1.47	CH ₂	Н	CH(CH ₃) ₂	NCH ₃
	Ib1.48	$CH(C_2H_5)$	Н	C_2H_5	NCH_3
	Ib1.49		H ₂) ₄ —	Н	NCH_3
40	Ib1.50	CH ₂ CH ₂	H H	CH ₃ H	NC ₂ H ₅
	Ib1.51 Ib1.52	CH_2 $C(CH_3)_2$	н Н	Н	NC_2H_5 NC_2H_5
	Ib1.53	CH_2	Н	C ₂ H ₅	NC_2H_5
	Ib1.54	CH_2	CH ₃	CH ₃	NC_2H_5
	Ib1.55	CH(CH ₃)	H	CH ₃	NC_2H_5
45	Ib1.56	CH(C ₂ H ₅)	H H	CH ₃ H	NC ₂ H ₅
73	Ib1.57 Ib1.58	CH[CH(CH ₃) ₂] CH ₂	H	$CH(CH_3)_2$	NC_2H_5 NC_2H_5
	Ib1.59	$CH(C_2H_5)$	H	C ₂ H ₅	NC ₂ H ₅
	Ib1.60	—CH—(CI		H	NC_2H_5
	Ib1.61	CH ₂	=0		S
50	Ib1.62 Ib1.63	CH(CH ₃)	=0 =0		S S
50	Ib1.64	$CH(C_2H_5)$ $CH[CH(CH_3)_2]$	=0		S
	Ib1.65	C(CH ₃) ₂	=0		S
	Ib1.66	$CCH_3(C_2H_5)$	=O		S
	Ib1.67	$CCH_3[CH(CH_3)_2]$	=0		S
	Ib1.68 Ib1.69	CH ₂ CH(CH ₃)	=0 =0		NH NH
55	Ib1.70	$CH(C_2H_5)$	=0		NH
	Ib1.71	$CH[CH(CH_3)_2]$	=0		NH
	Ib1.72	$C(CH_3)_2$	=O		NH
	Ib1.73	$CCH_3(C_2H_5)$	=0		NH
	Ib1.74	CCH ₃ [CH(CH ₃) ₂]	=0 =0		NH
60	Ib1.75 Ib1.76	CH ₂ CH(CH ₃)	=0		NCH ₃ NCH ₃
	Ib1.77	$CH(C_2H_5)$	=0		NCH ₃
	Ib1.78	$CH[CH(CH_3)_2]$	=0		NCH_3
	Ib1.79	$C(CH_3)_2$	=0		NCH ₃
	Ib1.80	$CCH_3(C_2H_5)$	=0		NCH ₃
65	Ib1.81 Ib1.82	$CCH_3[CH(CH_3)_2]$ O	=O COOCH ₃	Н	NCH ₃ CH ₂
-	Ib1.83	O	COOC ₂ H ₅	H	CH ₂
			2 3		2

No.	X	\mathbb{R}^4	\mathbb{R}^5	Y	
Ib1.84	0	CONHCH ₃	Н	CH ₂	5
Ib1.85	О	$CON(CH_3)_2$	H	CH_2	,
Ib1.86	О	CONHC ₂ H ₅	H	CH_2	
Ib1.87	О	$CON(C_2H_5)_2$	H	CH_2	
Ib1.88	О	CH_3	H	CH_2	
Ib1.89	О	C_2H_5	H	CH_2	
Ib1.90	О	$CH(CH_3)_2$	H	CH_2	10
Ib1.91	О	COC_2H_5	H	CH_2	
Ib1.92	О	CH ₂ CN	H	CH_2	
Ib1.93	О	$CH_2N(CH_3)_2$	H	CH_2	
Ib1.94	О	$CH_2ON=C(CH_3)_2$	H	CH_2	
Ib1.95	О	$CH(OC_2H_5)_2$	H	CH_2	15
Ib1.96	О	$CH(OCH_3)_2$	H	CH_2	13
Ib1.97	О	CH_3	CH_3	CH_2	
Ib1.98	O	CH ₃	C_2H_5	CH_2	
Ib1.99	О	C_2H_5	C_2H_5	CH_2	
Ib1.100	O	—(CH ₂) ₄ —	_	CH_2	
Ib1.101	О	(CH ₂) ₂ O(C	$(H_2)_2$ —	CH_2	20
Ib1.102	O	H	(CH ₂)	,—СН—	
Ib1.103	О	H	—(CH ₂),	СН—	
Ib1.104	O	CH ₃	H	$CHCH_3$	
Ib1.105	O	H	Η	CH_2	
Ib1.106	S	=O		O	
Ib1.107	CH_2	S		S	25
Ib1.108	CH(CH ₃)	=S		S	
Ib1.109	$CH(C_2H_5)$	S		S	
Ib1.110	$C(CH_3)_2$	<u>=</u> S		S	
Ib1.111	O	_O		NH	
Ib1.112	O	=O		NCH_3	30
Ib1.113	O	CH ₃	Η	NH	
Ib1.114	O	C_2H_5	Η	NH	
Ib1.115	O	CH ₃	CH_3	NH	
Ib1.116	O	C_2H_5	C_2H_5	NH	
Ib1.117	O	CH ₃	H	NCH_3	
Ib1.1.18	O	C_2H_5	Η	NCH_3	35
Ib1.119	О	CH ₃	CH_3	NCH_3	
Ib1.120	O	C_2H_5	C_2H_5	NCH ₃	
Ib1.121	NH	=0		NH	
Ib1.122	NH	<u></u> 0		NCH_3	
Ib1.123	NCH ₃	=0		NH	40
Ib1.124	NCH ₃	=0		NCH ₃	
Ib1.125	NC ₂ H ₅	=0		NH	
Ib1.126	NC ₂ H ₅	=0		NC ₂ H ₅	

In addition, the following 3-heterocyclyl-substituted benzoyl derivatives of the formula I are particularly extraordinarily preferred:

The compounds Ib2.1-Ib2.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is nitro.

The compounds Ib3.1-Ib3.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl and R^2 is methylsulfonyl.

The compounds Ib4.1-Ib4.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact R^1 is hydrogen and R^2 is methylsulfonyl.

The compounds Ib5.1-Ib5.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is trifluoromethyl and R² is methylsulfonyl.

The compounds Ib6.1-Ib6.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methylsulfonyl.

The compounds Ib7.1-Ib7.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro.

The compounds Ib8.1-Ib8.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is trifluoromethyl.

$$\begin{array}{c} \text{Ib12} \\ \text{H}_{3}\text{C} \\ \text{N} \\ \text{OH} \\ \text{OH} \\ \text{SO}_{2}\text{CH}_{3} \end{array}$$

The compounds Ib9.1-Ib9.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 15 is methylthio.

The compounds Ib13.1-Ib13.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is ethylsulfonyl.

$$\begin{array}{c} \text{Ib13} \\ \text{H}_{3}\text{C} \\ \text{N} \\ \text{OH} \\ \text{OH} \\ \text{SO}_{2}\text{C}_{2}\text{H}_{5} \end{array}$$

The compounds Ib10.1-Ib10.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is methylsulfinyl.

The compounds Ib14.1-Ib14.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact R^2 is methylsulfonyl and R^3 is methyl.

The compounds Ib11.1-Ib11.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is trifluoromethylsulfonyl.

The compounds Ib15.1-Ib15.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is methylsulfonyl and R³ is chlorine.

$$\begin{array}{c} \text{Ib15} \\ \text{H}_{3}\text{C} \\ \text{N} \\ \text{OH} \\ \text{CH}_{3} \end{array} \begin{array}{c} \text{Cl} \\ \text{N} \\ \text{SO}_{2}\text{CH}_{3} \end{array}$$

The compounds Ib12.1-Ib12.126, which differ from the $_{65}$ corresponding compounds Ib1.1-Ib1.126 by the fact that $\rm R^1$ is methoxy and $\rm R^2$ is methylsulfonyl.

The compounds Ib16.1-Ib16.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is methylsulfonyl and R^3 is chlorine.

The compounds Ib17.1-Ib17.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is methylsulfonyl and R^3 is methyl.

The compounds Ib18.1-Ib18.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methyl.

The compounds Ib19.1-Ib19.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl and R^2 is hydrogen.

The compounds Ib20.1-Ib20.126, which differ from the $_{65}$ corresponding compounds Ib1.1-Ib1.126 by the fact R^1 is methyl and R^2 is nitro.

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

The compounds Ib21.1-Ib21.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is methylsulfonyl and R¹⁸ is hydrogen.

The compounds Ib22.1-Ib22.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is nitro and R¹⁸ is hydrogen.

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

The compounds Ib23.1-Ib23.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is methylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c} O \\ CH_3 \\ N \\ OH \\ CH_3 \end{array} \begin{array}{c} X \\ R^4 \\ SO_2CH_3 \end{array}$$

The compounds Ib24.1-Ib24.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is hydrogen, R^2 is methylsulfonyl and R^{18} is hydrogen.

35

50

$$\begin{array}{c|c} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

The compounds Ib25.1-Ib25.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is trifluoromethyl, R^2 is methylsulfonyl and R^{18} is hydrogen.

The compounds Ib26.1-Ib26.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methylsulfonyl and R^{18} is hydrogen.

The compounds Ib27.1-Ib27.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact R^1 is nitro and R^{18} is hydrogen.

The compounds Ib28.1-Ib28.126, which differ from the $_{65}$ corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is trifluoromethyl and R^{18} is hydrogen.

$$\begin{array}{c} \text{Ib28} \\ \\ \text{O} \\ \\ \text{OH} \\ \\ \text{CH}_3 \end{array}$$

The compounds Ib29.1-Ib29.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylthio and R^{18} is hydrogen.

The compounds Ib30.1-Ib30.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfinyl and R^{18} is hydrogen.

$$\begin{array}{c} O \\ O \\ Cl \\ N \\ OH \\ CH_3 \end{array}$$

The compounds Ib31.1-Ib31.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is trifluoromethylsulfonyl and R^{18} is hydrogen.

The compounds Ib32.1-Ib32.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methoxy, R² is methylsulfonyl and R¹⁸ is hydrogen.

35

50

The compounds Ib33.1-Ib33.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is ethylsulfonyl and R¹⁸ is hydrogen.

$$\begin{array}{c|c}
O & Cl & N & X \\
\hline
N & OH & SO_2C_2H_5
\end{array}$$

The compounds Ib34.1-Ib34.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is methylsulfonyl, R³ is methyl and R¹⁸ is hydrogen.

The compounds Ib35.1-Ib35.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is methylsulfonyl, R³ is chlorine and R¹⁸ is hydrogen.

$$\begin{array}{c} O \\ O \\ Cl \\ N \\ N \\ OH \\ CH_3 \end{array} \begin{array}{c} Cl \\ N \\ SO_2CH_3 \end{array} \begin{array}{c} R^4 \\ R^5 \\ \\ 60 \end{array}$$

The compounds Ib36.1-Ib36.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that $_{65}$ R 1 is methyl, R 2 is methylsulfonyl, R 3 is chlorine and R 18 is hydrogen.

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

The compounds Ib37.1-Ib37.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is methylsulfonyl, R^3 is methyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & CH_3 & N & X \\ \hline \\ N & OH & SO_2CH_3 \\ \hline \\ CH_3 & CH_3 \end{array}$$

The compounds Ib38.1-Ib38.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl and R^{18} is hydrogen.

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

The compounds Ib39.1-Ib39.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methyl, R² is hydrogen and R¹⁸ is hydrogen.

$$\begin{array}{c} O \\ CH_3 \\ N \\ OH \end{array}$$

The compounds Ib40.1-Ib40.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is nitro and R^{18} is hydrogen.

45

50

The compounds Ib41.1-Ib41.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is nitro, R^{16} is ethyl and R^{18} is hydrogen.

$$\begin{array}{c|c}
O & Cl & N & X \\
\hline
N & NO_2 \\
\hline
C_2H_5 & 25
\end{array}$$

The compounds Ib42.1-Ib42.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is methylsulfonyl, R^{16} is ethyl and R^{18} is hydrogen.

$$\begin{array}{c} \text{Ib42} \\ \text{O} \\ \text{OH} \\ \text{OH} \\ \text{SO}_2\text{CH}_3 \end{array}$$

The compounds Ib43.1-Ib43.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is hydrogen, R^2 is methylsulfonyl, R^{16} is ethyl and R^{18} is hydrogen.

$$\begin{array}{c|c}
O & N & X & R^4 \\
N & N & Y & R^5 & 55 \\
N & OH & SO_2CH_3 & 60
\end{array}$$

The compounds Ib44.1-Ib44.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that 65 R¹ is trifluoromethyl, R² is methylsulfonyl, R¹⁶ is ethyl and R¹⁸ is hydrogen.

$$\begin{array}{c|c} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

The compounds Ib45.1-Ib45.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methylsulfonyl, R¹⁶ is ethyl and R¹⁸ is hydrogen.

$$\begin{array}{c|c} O & SO_2CH_3 & N-X \\ \hline N & OH & CI \\ \hline \\ C_2H_5 & \end{array}$$

The compounds Ib46.1-Ib46.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro, R^{16} is ethyl and R^{18} is hydrogen.

The compounds Ib47.1-Ib47.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is trifluoromethyl, R¹⁶ is ethyl and R¹⁸ is hydrogen.

The compounds Ib48.1-Ib48.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylthio, R^{16} is ethyl and R^{18} is hydrogen.

The compounds Ib49.1-Ib49.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfinyl, R^{16} is ethyl and R^{18} is hydrogen.

The compounds Ib50.1-Ib50.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is trifluoromethylsulfonyl, R^{16} is ethyl and R^{18} is hydrogen.

The compounds Ib51.1-Ib51.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methoxy, R^2 is methylsulfonyl, R^{16} is ethyl and R^{18} is hydrogen.

$$\begin{array}{c|c}
O & OCH_3 & N & X \\
N & & & & & \\
N & & & & \\
N & & & & \\
N & & & & \\
N & & & & \\
N & & &$$

The compounds Ib52.1-Ib52.126, which differ from the $_{65}$ corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is ethylsulfonyl, R^{16} is ethyl and R^{18} is hydrogen.

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

The compounds Ib53.1-Ib53.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, R^3 is methyl, R^{16} is ethyl and R^{18} is hydrogen.

$$\begin{array}{c} O \\ Cl \\ N \\ N \\ C_2H_5 \end{array} \begin{array}{c} Cl \\ N \\ CH_3 \end{array} \begin{array}{c} R^4 \\ R^5 \end{array}$$

The compounds Ib54.1-Ib54.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, R^3 is chlorine, R^{16} is ethyl and R^{18} is hydrogen.

$$\begin{array}{c|c} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

The compounds Ib55.1-Ib55.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is methylsulfonyl, R^3 is chlorine, R^{16} is ethyl and R^{18} is hydrogen.

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

The compounds Ib56.1-Ib56.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methyl, R² is methylsulfonyl, R³ is methyl, R¹⁶ is ethyl and R¹⁸ is hydrogen.

The compounds Ib57.1-Ib57.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methyl, R¹⁶ is ethyl and R¹⁸ is hydrogen.

$$\begin{array}{c|c} & & & & & & Ib57 \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

The compounds Ib58.1-Ib58.126, which differ from the 30 corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is hydrogen, R^{16} is ethyl and R^{18} is hydrogen.

$$\begin{array}{c} 35 \\ \text{Ib58} \end{array}$$

The compounds Ib59.1-Ib59.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methyl, R² is nitro, R¹⁶ is ethyl and R¹⁸ is hydrogen.

The compounds Ib60.1-Ib60.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that $_{65}$ R² is methylsulfonyl, R¹⁶ is n-propyl and R¹⁸ is hydrogen.

$$\begin{array}{c} O \\ Cl \\ N \\ N \\ OH \\ SO_2CH_3 \end{array}$$

The compounds Ib61.1-Ib61.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is nitro, R^{16} is n-propyl and R^{18} is hydrogen.

$$\begin{array}{c|c}
O & Cl & N-X \\
N-X & R^4 \\
NO_2 & R_5
\end{array}$$
Ib61

The compounds Ib62.1-Ib62.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is methylsulfonyl, R^{16} is n-propyl and R^{18} is hydrogen.

$$\begin{array}{c} O \\ CH_3 \\ N \\ N \\ OH \end{array}$$

$$\begin{array}{c} CH_3 \\ N \\ SO_2CH_3 \end{array}$$

$$\begin{array}{c} R^4 \\ R_5 \end{array}$$

The compounds Ib63.1-Ib63.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is hydrogen, R^2 is methylsulfonyl, R^{16} is n-propyl and R^{18} is hydrogen.

$$\begin{array}{c} O \\ N \\ N \\ N \\ OH \\ C_3H_7 \end{array}$$

The compounds Ib64.1-Ib64.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is trifluoromethyl, R^2 is methylsulfonyl, R^{16} is n-propyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & CF_3 & N-X \\ \hline \\ N & \\ N & \\ OH & \\ SO_2CH_3 & \\ \hline \\ C_3H_7 & \\ \end{array}$$

The compounds Ib65.1-Ib65.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methylsulfonyl, R^{16} is n-propyl and R^{18} is hydrogen.

The compounds Ib66.1-Ib66.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro, R^{16} is n-propyl and R^{18} is hydrogen.

$$\begin{array}{c} 35 \\ \text{Ib66} \\ \\ N \\ \text{OH} \\ \text{OH} \\ \\ \text{Cl} \\ \\ \text{Cl} \\ \end{array}$$

The compounds Ib67.1-Ib67.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is trifluoromethyl, R^{16} is n-propyl and R^{18} is hydrogen.

O CI
$$N-X$$
 R^4 55

N OH CF_3 60

The compounds Ib68.1-Ib68.126, which differ from the 65 corresponding compounds Ib1.1-Ib1.126 by the fact that R² is methylthio, R¹⁶ is n-propyl and R¹⁸ is hydrogen.

$$\begin{array}{c} O \\ Cl \\ N \\ N \\ OH \\ C_{3}H_{7} \end{array}$$

The compounds Ib69.1-Ib69.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfinyl, R^{16} is n-propyl and R^{18} is hydrogen.

O CI N-X
$$R^4$$
 R_5 N SOCH₃

The compounds Ib70.1-Ib70.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is trifluoromethylsulfonyl, R^{16} is n-propyl and R^{18} is hydrogen.

$$\begin{array}{c|c} & & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ &$$

The compounds Ib71.1-Ib71.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methoxy, R^2 is methylsulfonyl, R^{16} is n-propyl and R^{18} is hydrogen.

OCH₃ N-X
$$\mathbb{R}^4$$
 \mathbb{R}^4 \mathbb{R}_5 \mathbb{R}^4 \mathbb{R}_5 \mathbb{R}_5

The compounds Ib72.1-Ib72.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is ethylsulfonyl, R¹⁶ is n-propyl and R¹⁸ is hydrogen.

$$\begin{array}{c|c} O & Cl & N-X \\ \hline & & & \\ N-X \\ \hline & & \\ N-X \\ \hline & & \\ R_5 \end{array} \qquad \qquad 5$$

$$\begin{array}{c|c} SO_2C_2H_5 \\ \hline & & \\ & &$$

The compounds Ib73.1-Ib73.126, which differ from the Corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, R^3 is methyl, R^{16} is n-propyl and R^{18} is hydrogen.

O Cl N-X
$$\mathbb{R}^4$$
 \mathbb{R}_5 \mathbb

The compounds Ib74.1-Ib74.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, R^3 is chlorine, R^{16} is n-propyl and R^{18} is hydrogen.

$$\begin{array}{c|c}
O & CI & N-X \\
N & & & \\
OH & & & \\
CI & & & \\
SO_2CH_3 & & & \\
& & & \\
40 & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
&$$

The compounds Ib75.1-Ib75.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is methylsulfonyl, R^3 is chlorine, R^{16} is n-propyl and R^{18} is hydrogen.

The compounds Ib76.1-Ib76.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that $_{65}$ R¹ is methyl, R² is methylsulfonyl, R³ is methyl, R¹⁶ is n-propyl and R¹⁸ is hydrogen.

The compounds Ib77.1-Ib77.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^{16} is n-propyl and R^{18} is hydrogen.

The compounds Ib78.1-Ib78.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is hydrogen, R^{16} is n-propyl and R^{18} is hydrogen.

$$\begin{array}{c} O \\ CH_3 \\ N \\ N \\ C_3H_7 \end{array}$$

The compounds Ib79.1-Ib79.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is nitro, R^{16} is n-propyl and R^{18} is hydrogen.

$$\begin{array}{c} O \\ CH_3 \\ N \\ N \\ OH \end{array}$$

$$\begin{array}{c} CH_3 \\ N \\ NO_2 \end{array}$$

$$\begin{array}{c} R^4 \\ R^5 \end{array}$$

The compounds Ib80.1-Ib80.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹⁶ is n-propyl and R¹⁸ is hydrogen.

$$\begin{array}{c|c}
O & Cl & N-X \\
N-X & R^4 \\
N & Cl \\
N & Cl
\end{array}$$

The compounds Ib81.1-Ib81.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is methylsulfonyl, R¹⁶ is n-butyl and R¹⁸ is hydrogen. ¹⁵

The compounds Ib82.1-Ib82.126, which differ from the ³⁰ corresponding compounds Ib1.1-Ib1.126 by the fact that R² is nitro, R¹⁶ is n-butyl and R¹⁸ is hydrogen.

The compounds Ib83.1-Ib83.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is methylsulfonyl, R^{16} is n-butyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & CH_3 & N-X \\ \hline & & & & \\ N-X & R^4 \\ \hline & & & \\ N-X & R^5 \\ \hline & & & \\ N-X & R^5 \\ \hline & & & \\ SO_2CH_3 \\ \hline & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

The compounds Ib84.1-Ib84.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that $_{65}$ R¹ is hydrogen, R² is methylsulfonyl, R¹⁶ is n-butyl and R¹⁸ is hydrogen.

$$\begin{array}{c} O \\ N \\ N \\ N \\ OH \end{array}$$

$$\begin{array}{c} N \\ N \\ SO_2CH_3 \end{array}$$

$$\begin{array}{c} R^4 \\ R^5 \\ \\ C_4H_9 \end{array}$$

The compounds Ib85.1-Ib85.126, which differ from the Corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is trifluoromethyl, R^2 is methylsulfonyl, R^{16} is n-butyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & CF_3 & N-X \\ \hline \\ N & \\ N & \\ OH & \\ SO_2CH_3 & \\ \hline \\ C_4H_9 & \\ \end{array}$$

The compounds Ib86.1-Ib86.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methylsulfonyl, R¹⁶ is n-butyl and R¹⁸ is hydrogen.

$$\begin{array}{c} O \\ N \\ N \\ N \\ OH \\ C_1 \\ C_2 \\ H_9 \end{array}$$

The compounds Ib87.1-Ib87.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro, R^{16} is n-butyl and R^{18} is hydrogen.

$$\begin{array}{c|c}
O & NO_2 & N-X \\
\hline
N & NO_2 & N-X \\
R^4 & R^5
\end{array}$$

The compounds Ib88.1-Ib88.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is trifluoromethyl, R¹⁶ is n-butyl and R¹⁸ is hydrogen.

$$\begin{array}{c|c} O & Cl & N-X \\ \hline & & & \\ N-X & R^4 \\ \hline & & \\ N-X & R^5 \end{array} \qquad \qquad 5$$

The compounds Ib89.1-Ib89.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylthio, R^{16} is n-butyl and R^{18} is hydrogen.

$$\begin{array}{c|c}
O & Cl & N-X & R^4 \\
N & & & & & & & & & & & & & \\
N & & & & & & & & & & & & \\
N & & & & & & & & & & & & \\
N & & & & & & & & & & & & \\
N & & & & & & & & & & & & & \\
N & & & & & & & & & & & & & \\
N & & & & & & & & & & & & & \\
N & & & & & & & & & & & & & & \\
N & & & & & & & & & & & & & & \\
N & & & & & & & & & & & & & & \\
N & & & & & & & & & & & & & & \\
N & & & & & & & & & & & & & & \\
N & & & & & & & & & & & & & & \\
N & & & & & & & & & & & & & & \\
N & & & & & & & & & & & & & & \\
N & & & & & & & & & & & & & & \\
N & & & & & & & & & & & & & & \\
N & & & & & & & & & & & & & & \\
N & & & & & & & & & & & & & & \\
N & & & & & & & & & & & & & & \\
N & & & & & & & & & & & & & & \\
N & & & & & & & & & & & & & & \\
N & & & & & & & & & & & & & \\
N & & & & & & & & & & & & & \\
N & & & & & & & & & & & & & \\
N & & & & & & & & & & & & & \\
N & & & & & & & & & & & & & \\
N & & & & & & & & & & & & \\
N & & & & & & & & & & & & \\
N & & & & & & & & & & & & \\
N & & & & & & & & & & & & \\
N & & & & & & & & & & & & \\
N & & & & & & & & & & & & \\
N & & & & & & & & & & & & \\
N & & & & & & & & & & & & \\
N & & & & & & & & & & & & \\
N & & & & & & & & & & & & \\
N & & & & & & & & & & & \\
N & & & & & & & & & & & \\
N & & & & & & & & & & & \\
N & & & & & & & & & & & \\
N & & & & & & & & & & & \\
N & & & & & & & & & & & \\
N & & & & & & & & & & & \\
N & & & & & & & & & & & \\
N & & & & & & & & & & \\
N & & & & & & & & & & \\
N & & & & & & & & & & \\
N & & & & & & & & & & \\
N & & & & & & & & & & & \\
N & & & & & & & & & & \\
N & & & & & & & & & & \\
N & & & & & & & & & & \\
N & & & & & & & & & & \\
N & & & & & & & & & & \\
N & & & & & & & & & \\
N & & & & & & & & & & \\
N & & & & & & & & & & \\
N & & & & & & & & & & \\
N & & & & & & & & & & \\
N & & & & & & & & & \\
N & & & & & & & & & \\
N & & & & & & & & & & \\
N & & & & & & & & & & \\
N & & & & & & & & & & \\
N & & & & & & & & & & \\
N & & & & & & & & & & \\
N & & & & & & & & & & \\
N & & & & & & & & & & \\
N & & & & & & & & & & \\
N & & & & & & & & & & \\
N & & & & & & & & & \\
N & & & & & & & & & \\
N & & & & & & & & & \\
N & & &$$

The compounds Ib90.1-Ib90.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfinyl, R^{16} is n-butyl and R^{18} is hydrogen.

$$\begin{array}{c|c}
O & Cl & N-X \\
N & & R^4 \\
N & OH & SOCH_3
\end{array}$$

The compounds Ib91.1-Ib91.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is trifluoromethylsulfonyl, R^{16} is n-butyl and R^{18} is hydrogen.

$$\begin{array}{c|c}
O & CI & N & X \\
\hline
N & OH & SO_2CF_3
\end{array}$$

$$\begin{array}{c|c}
Ib91 \\
SO_2CF_3 & 60
\end{array}$$

The compounds Ib92.1-Ib92.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that $_{65}$ R¹ is methoxy, R² is methylsulfonyl, R¹⁶ is n-butyl and R¹⁸ is hydrogen.

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

The compounds Ib93.1-Ib93.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is ethylsulfonyl, R¹⁶ is n-butyl and R¹⁸ is hydrogen.

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

The compounds Ib94.1-Ib94.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, R^3 is methyl, R^{16} is n-butyl and R^{18} is hydrogen.

$$\begin{array}{c|c}
 & Cl & N & X \\
 & N & N & R^4 \\
 & N & N & N & N \\
 & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N & N \\
 & N & N & N & N & N & N & N \\
 & N & N & N & N & N & N & N \\
 & N & N & N & N & N & N & N \\
 & N & N & N & N & N & N & N \\
 & N & N & N & N & N & N & N \\
 & N & N & N & N & N & N & N \\
 & N & N & N & N & N & N & N \\
 & N & N & N & N & N & N & N \\
 & N & N & N & N & N & N & N \\
 & N & N & N & N & N & N & N \\
 & N & N & N & N & N & N & N \\
 & N & N & N & N & N & N & N \\
 & N & N & N & N & N & N & N \\
 & N & N & N & N & N & N & N \\
 & N & N & N & N & N & N & N \\
 & N & N & N & N & N & N & N \\
 & N & N & N & N & N & N & N \\
 & N & N & N & N & N & N & N \\
 & N & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\
 & N & N & N & N & N \\$$

The compounds Ib95.1-Ib95.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, R^3 is chlorine, R^{16} is n-butyl and R^{18} is hydrogen.

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

The compounds Ib96.1-Ib96.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is methylsulfonyl, R^3 is chlorine, R^{16} is n-butyl and R^{18} is hydrogen.

The compounds Ib97.1Ib97.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that $\rm R^1$ is methyl, $\rm R^2$ is methylsulfonyl, $\rm R^3$ is methyl, $\rm R^{16}$ is $\rm _{15}$ n-butyl and $\rm R^{18}$ is hydrogen.

The compounds Ib98.1-Ib98.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methyl, R¹⁶ is n-butyl and R¹⁸ is hydrogen.

$$\begin{array}{c} O \\ CH_3 \\ N \\ N \\ C_4H_9 \end{array}$$

The compounds Ib99.1-Ib99.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is hydrogen, R^{16} is n-butyl and R^{18} is hydrogen.

$$\begin{array}{c|c}
CH_3 & N & X & R^4 \\
N & OH & Y & R^5 & \\
N & C_4H_9 & 60
\end{array}$$

The compounds Ib100.1-Ib100.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by, the fact $_{65}$ that R^1 is methyl, R^2 is nitro, R^{16} is n-butyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & CH_3 & N & X \\ \hline \\ N & NO_2 \\ \hline \\ C_4H_9 \end{array}$$

The compounds Ib101.1-Ib101.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^{16} is n-butyl and R^{18} is hydrogen.

$$\begin{array}{c} O \\ C \\ N \\ N \\ O \\ C_4 \\ H_9 \end{array}$$

The compounds Ib102.1-Ib102.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, R^{16} is iso-butyl and R^{18} is hydrogen.

$$\begin{array}{c} O & Cl & N & X \\ N & & & \\ N & & & \\ CH_2CH(CH_3)_2 & & & \\ \end{array}$$

The compounds Ib103.1-Ib103.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is nitro, R^{16} is iso-butyl and R^{18} is hydrogen.

$$\begin{array}{c} O & CI & N & X \\ \hline \\ N & OH & NO_2 \\ \hline \\ CH_2CH(CH_3)_2 \end{array}$$

The compounds Ib104.1-Ib104.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is methylsulfonyl, R^{16} is iso-butyl and R^{18} is hydrogen.

$$\begin{array}{c} \text{Ib104} \\ \\ \text{O} \\ \text{CH}_3 \\ \\ \text{N} \\ \text{OH} \\ \\ \text{SO}_2\text{CH}_3 \\ \\ \text{CH}_2\text{CH}(\text{CH}_3)_2 \\ \end{array} \qquad \qquad 5$$

The compounds Ib105.1-Ib105.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is hydrogen, R^2 is methylsulfonyl, R^{16} is iso-butyl and R^{18} is hydrogen.

The compounds Ib106.1-Ib106.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is trifluoromethyl, R^2 is methylsulfonyl, R^{16} is isobutyl and R^{18} is hydrogen.

O CF₃ N-X
$$\mathbb{R}^4$$
 \mathbb{R}_5 \mathbb{R}_5

The compounds Ib107.1-Ib107.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methylsulfonyl, R^{16} is iso-butyl and R^{18} is hydrogen.

The compounds Ib108.1-Ib108.126, which differ from the 65 corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro, R^{16} is iso-butyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & NO_2 & N-X \\ \hline N & \\ N & \\ OH & \\ CH_2CH(CH_3)_2 \end{array}$$

The compounds Ib109.1-Ib109.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is trifluoromethyl, R^{16} is iso-butyl and R^{18} is hydrogen.

O CI N-X
$$\mathbb{R}^4$$
 \mathbb{R}_5 \mathbb

The compounds Ib110.1-Ib110.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylthio, R^{18} is iso-butyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & CI & N-X \\ \hline & & & \\ N-X & & \\ R_5 & & \\ N-X & & \\ R_5 & & \\ N-X & & \\ R_5 & & \\ N-X & & \\ N-$$

The compounds Ib111.1-Ib111.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfinyl, R^{16} is iso-butyl and R^{18} is hydrogen.

$$\begin{array}{c} O \\ Cl \\ N \\ N \\ OH \\ CH_2CH(CH_3)_2 \end{array}$$

The compounds Ib112.1-Ib112.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is trifluoromethylsulfonyl, R^{16} is iso-butyl and R^{18} is hydrogen.

50

O Cl N-X
$$\mathbb{R}^4$$
 \mathbb{R}^4 \mathbb{R}^5 \mathbb{R}^4 \mathbb

The compounds Ib113.1-Ib113.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methoxy, R^2 is methylsulfonyl, R^{16} is iso-butyl and R^{18} is hydrogen.

O OCH₃ N-X
$$\mathbb{R}^4$$
 20 \mathbb{N}^4 $\mathbb{N$

The compounds Ib114.1-Ib114.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is ethylsulfonyl, R^{16} is iso-butyl and R^{18} is hydrogen.

The compounds Ib115.1-Ib115.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, R^3 is methyl, R^{16} is iso-butyl and R^{18} is hydrogen.

O Cl N-X
$$\mathbb{R}^4$$
 \mathbb{R}^4 \mathbb{R}^5 \mathbb{R}^4 \mathbb

The compounds Ib116.1-Ib116.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that 65 R² is methylsulfonyl, R³ is chlorine, R¹⁶ is iso-butyl and R¹⁸ is hydrogen.

$$\begin{array}{c|c} O & Cl & N-X \\ \hline N & & \\ N & & \\ N & & \\ OH & & \\ Cl & & \\ SO_2CH_3 & \\ \hline CH_2CH_{(CH_3)_2} & \\ \end{array}$$

The compounds Ib117.1-Ib117.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is methylsulfonyl, R^3 is chlorine, R^{16} is iso-butyl and R^{18} is hydrogen.

O CH₃ N X
$$\mathbb{R}^4$$
 \mathbb{R}_5 \mathbb{N} \mathbb{N}

The compounds Ib118.1-Ib118.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is methylsulfonyl, R^3 is methyl, R^{16} is iso-butyl and R^{18} is hydrogen.

$$\begin{array}{c} O \\ CH_3 \\ N \\ N \\ OH \\ CH_2CH(CH_3)_2 \end{array} \qquad \begin{array}{c} CH_3 \\ N \\ CH_3 \end{array} \qquad \begin{array}{c} N \\ X \\ R_5 \end{array}$$

The compounds Ib119.1-Ib119.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^{16} is iso-butyl and R^{18} is hydrogen.

O CH₃ N-X
$$\mathbb{R}^4$$
 \mathbb{R}_5 \mathbb{R}_5

The compounds Ib120.1-Ib120.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is hydrogen, R^{16} is iso-butyl and R^{18} is hydrogen.

O CH₃ N-X
$$\mathbb{R}^4$$
 \mathbb{R}^4 \mathbb{R}^5 \mathbb{R}^4 \mathbb{R}^4

The compounds Ib121.1-Ib121.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is nitro, R^{16} is iso-butyl and R^{18} is $_{15}$ hydrogen.

The compounds Ib122.1-Ib122.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^{16} is iso-butyl and R^{18} is hydrogen.

$$\begin{array}{c} 35 \\ \text{Ib} 122 \\ \\ \text{N} \\ \text{OH} \\ \\ \text{CH}_2\text{CH}(\text{CH}_3)_2 \end{array}$$

The compounds Ib123.1-Ib123.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact R^1 is methylsulfonyl and R^2 is trifluoromethyl.

The compounds Ib124.1-Ib124.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that $\,^{65}$ R¹ is methylsulfonyl, R² is trifluoromethyl, and R¹⁸ is hydrogen.

$$\begin{array}{c|c}
O & SO_2CH_3 & N-X \\
N & & \\
N & & \\
CH_3 & & \\
\end{array}$$

The compounds Ib125.1-Ib125.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methylsulfonyl, R^2 is trifluoromethyl, R^{16} is n-propyl and R^{18} is hydrogen.

$$\begin{array}{c|c}
O & SO_2CH_3 & N-X \\
N & & & \\
N & & & \\
N & & & \\
CF_3 & & & \\
\end{array}$$
Ib125

The compounds Ib126.1-Ib126.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methylsulfonyl, R^2 is trifluoromethyl, R^{16} is n-butyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & SO_2CH_3 & N-X \\ \hline & & & \\ N & & & \\ N & & & \\ N & & & \\ CF_3 & & & \\ \end{array}$$

The compounds Ib127.1-Ib127.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methylsulfonyl, R^2 is trifluoromethyl, R^{16} is isobutyl and R^{18} is hydrogen.

The compounds Ib128.1-Ib128.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methylsulfonyl, R^2 is trifluoromethyl, R^{16} is ethyl and R^{18} is hydrogen.

50

The compounds Ib129.1-Ib129.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro and R^2 is methylsulfonyl.

The compounds Ib130.1-Ib130.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro, R^2 is methylsulfonyl and R^{18} is hydrogen.

The compounds Ib131.1-Ib131.126, which differ from the 45 corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro, R^2 is methylsulfonyl, R^{16} is n-propyl and R^{18} is hydrogen.

The compounds Ib132.1-Ib132.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro, R^2 is methylsulfonyl, R^{16} is n-butyl and R^{18} is hydrogen.

$$\begin{array}{c|c}
O & NO_2 & N-X \\
N & & & \\
C_4H_9 & & & \\
\end{array}$$
Ib132

The compounds Ib133.1-Ib133.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro, R^2 is methylsulfonyl, R^{16} is iso-butyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & NO_2 & N-X \\ \hline N &$$

The compounds Ib134.1-Ib134.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro, R^2 is methylsulfonyl, R^{16} is ethyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & NO_2 & N-X \\ \hline N & NO_2 & NO_2 \\ \hline N & NO_2$$

The compounds Ib135.1-Ib135.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^{18} is hydrogen.

$$\begin{array}{c|c}
O & Cl & N-X \\
N-X & R^4 \\
N & Cl & R^5
\end{array}$$

The compounds Ib136.1-Ib136.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^{16} is ethyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & Cl & N-X \\ \hline & & & \\ N-X \\ \hline & & \\ N-X \\ \hline & & \\ R^5 \end{array} \qquad \begin{array}{c} Ib136 \\ 5 \\ \hline \\ C_2H_5 \end{array}$$

The compounds Ib137.1-Ib137.126 which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that Z is methylsulfonyl and R¹⁸ is hydrogen.

O Cl N
$$\mathbb{R}^4$$
 20
$$\begin{array}{c} & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

The compounds Ib138.1-Ib138.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, Z is methylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c} 35 \\ \text{Ib} 138 \\ \text{O} \\ \text{CH}_3 \end{array}$$

The compounds Ib139.1-Ib139.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is nitro, Z is methylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c}
O & Cl & N & X & R^4 \\
\hline
N & NO_2 & & & & & & & & & \\
N & NO_2 & & & & & & & & & \\
\hline
CH_2 & & & & & & & & & & & & \\
\end{array}$$
Ib139

The compounds Ib140.1-Ib140.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that $_{65}$ R¹ is methyl, R² is methylsulfonyl, Z is methylsulfonyl and R¹⁸ is hydrogen.

$$\begin{array}{c} \text{Ib} 140 \\ \text{O} \\ \text{O} \\ \text{CH}_3 \\ \text{O} \\ \text{OSO}_2\text{CH}_3 \\ \text{CH}_3 \end{array}$$

The compounds Ib141.1-Ib141.126 which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methylsulfonyl, Z is methylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & SO_2CH_3 & N-X \\ \hline N & & \\ N & \\ OSO_2CH_3 & \\ Cl & \\ \end{array}$$

The compounds Ib142.1-Ib142.126 which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is nitro, Z is methylsulfonyl and R¹⁸ is hydrogen.

$$\begin{array}{c|c}
O & NO_2 & N & X \\
N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & X \\
N & N & NO_2 & N & N \\
N & N & NO_2 & N & N \\
N & N & NO_2 & N & N \\
N & N & NO_2 & N & N \\
N & N & NO_2 & N & N \\
N & N & NO_2 & N & N \\
N & N & NO_2 & N & N \\
N & N & NO_2 & N & N \\
N & N & NO_2 & N & N \\
N & N & NO_2 & N & N \\
N & N & NO_2 & N & N \\
N & N & NO_2 & N & N \\
N & N & NO_2 & N & N \\
N & N & NO_2 & N & N \\
N & N & NO_2 & N & N \\
N & N & NO_2 & N & N \\
N & N & NO_2 & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\
N & N & N & N & N \\$$

The compounds Ib143.1-Ib143.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact R^1 is methoxy, R^2 and Z are methylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & OCH_3 & N & X \\ \hline \\ N & OSO_2CH_3 & SO_2CH_3 \\ \hline \\ CH_3 & \end{array}$$

The compounds Ib144.1-Ib144.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is ethylsulfonyl, Z is methylsulfonyl and R^{18} is hydrogen.

50

The compounds Ib145.1-Ib145.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹⁶ is ethyl, Z is methylsulfonyl and R¹⁸ is hydrogen.

OSO₂CH₃

$$R^4$$
 R^5
 OSO_2 CH₃
 C_1
 C_2
 C_3
 C_4
 C_5
 C_5

The compounds Ib146.1-Ib146.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, R^{16} is ethyl, Z is methylsulfonyl and R^{18} is hydrogen.

The compounds Ib147.1-Ib147.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is nitro, R^{16} is ethyl, Z is methylsulfonyl and R^{18} is hydrogen.

The compounds Ib148.1-Ib148.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that $_{65}$ R¹ is methyl, R² is methylsulfonyl, R¹⁶ is ethyl, Z is methylsulfonyl and R¹⁸ is hydrogen.

$$\begin{array}{c} O \\ CH_3 \\ N \\ N \\ C_2H_5 \end{array} \qquad \begin{array}{c} CH_3 \\ N \\ SO_2CH_3 \end{array} \qquad \begin{array}{c} R^4 \\ R^5 \end{array}$$

The compounds Ib149.1-Ib149.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methylsulfonyl, R^{16} is ethyl, Z is methylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & SO_2CH_3 & N-X \\ \hline N & N & R^4 \\ \hline N & OSO_2CH_3 & Cl \\ \hline C_2H_5 & Cl \\ \end{array}$$

The compounds Ib150.1-Ib150.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro, R^{16} is ethyl, Z is methylsulfonyl and R^{18} is hydrogen.

The compounds Ib151.1-Ib151.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methoxy, R^2 is methylsulfonyl, R^{16} is ethyl, Z is methylsulfonyl and R^{18} is hydrogen.

The compounds Ib152.1-Ib152.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is ethylsulfonyl, R¹⁶ is ethyl, Z is methylsulfonyl and R¹⁸ is hydrogen.

The compounds Ib153.1-Ib153.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that Z is methylsulfonyl.

The compounds Ib154.1-Ib154.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² and Z are methylsulfonyl.

The compounds Ib155.1-Ib155.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is nitro and Z is methylsulfonyl.

The compounds Ib156.1-Ib156.126, which differ from the 65 corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methyl; R² and Z are methylsulfonyl.

$$\begin{array}{c} \text{Ib156} \\ \text{H}_{3}\text{C} \\ \text{N} \\ \text{OSO}_{2}\text{CH}_{3} \\ \text{CH}_{3} \end{array}$$

The compounds Ib157.1-Ib157.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 and Z are methylsulfonyl.

The compounds Ib158.1-Ib158.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro and Z is methylsulfonyl.

The compounds Ib159.1-Ib159.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methoxy, R^2 and Z are methylsulfonyl.

The compounds Ib160.1-Ib160.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is ethylsulfonyl and Z is methylsulfonyl.

50

$$\begin{array}{c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

The compounds Ib161.1-Ib161.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that Z is ethylsulfonyl and R^{18} is hydrogen.

The compounds Ib162.1-Ib162.126, which differ from the 30 corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, Z is ethylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c} \text{Ib} 162 \\ \text{O} \\ \text{C} \\ \text{D} \\ \text{O} \\ \text{O} \\ \text{C} \\ \text{D} \\ \text{O} \\ \text{C} \\ \text{D} \\ \text{C} \\ \text{H}_3 \\ \end{array}$$

The compounds Ib163.1-Ib163.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is nitro, Z is ethylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c}
O & Cl & N & X & R^4 \\
N & N & NO_2 & NO_2
\end{array}$$

$$\begin{array}{c|c}
O & Cl & N & X & R^4 & NO_2 & NO_2 & NO_2
\end{array}$$

$$\begin{array}{c|c}
O & Cl & N & X & R^4 & NO_2 & NO_2 & NO_2
\end{array}$$

The compounds Ib164.1-Ib164.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that $_{65}$ R¹ is methyl, R² is methylsulfonyl, Z is ethylsulfonyl and R¹⁸ is hydrogen.

$$\begin{array}{c} \text{Ib} 164 \\ \text{O} \\ \text{O} \\ \text{CH}_3 \\ \text{O} \\ \text{OSO}_2\text{C}_2\text{H}_5 \\ \text{SO}_2\text{CH}_3 \\ \text{CH}_3 \end{array}$$

The compounds Ib165.1-Ib165.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methylsulfonyl, Z is ethylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & SO_2CH_3 & N-X \\ \hline N & \\ N & \\ OSO_2C_2H_5 & \\ Cl & \\ \end{array}$$

The compounds Ib166.1-Ib166.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro, Z is ethylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & NO_2 & N & X \\ \hline N & NO_2 & N & X \\ \hline N & OSO_2C_2H_5 & Cl \\ \hline CH_3 & & & \end{array}$$

The compounds Ib167.1-Ib167.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methoxy, R^2 is methylsulfonyl, Z is ethylsulfonyl and R^{18} is hydrogen.

The compounds Ib168.1-Ib168.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 and Z are ethylsulfonyl and R^{18} is hydrogen.

50

The compounds Ib169.1-Ib169.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹⁶ is ethyl, Z is ethylsulfonyl and R¹⁸ is hydrogen.

The compounds Ib170.1-Ib170.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, R^{16} is ethyl, Z is ethylsulfonyl and R^{18} is hydrogen.

The compounds Ib171.1-Ib171.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is nitro, R^{16} is ethyl, Z is ethylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c}
O & Cl & N & X & R^4 \\
N & & & & \\
N & & & \\
N & &$$

The compounds Ib172.1-Ib172.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that 65 R¹ is methyl, R² is methylsulfonyl, R¹⁶ is ethyl, Z is ethylsulfonyl and R¹⁸ is hydrogen.

$$\begin{array}{c} O \\ CH_3 \\ N \\ O \\ OSO_2C_2H_5 \end{array}$$

$$\begin{array}{c} Ib172 \\ R^5 \\ SO_2CH_3 \\ \\ C_2H_5 \end{array}$$

The compounds Ib173.1-Ib173.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methylsulfonyl, R^{16} is ethyl, Z is ethylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & SO_2CH_3 & N-X \\ \hline N & \\ N & \\ OSO_2C_2H_5 & \\ \hline C_1 & \\ C_2H_5 & \\ \end{array}$$

The compounds Ib174.1-Ib174.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro, R^{16} is ethyl, Z is ethylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & NO_2 & N & X \\ \hline N & NO_2 & N & X \\ \hline N & NO_2 & N & X \\ \hline OSO_2C_2H_5 & Cl & \\ \hline C_2H_5 & Cl & \\ \end{array}$$

The compounds Ib175.1-Ib175.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methoxy, R^2 is methylsulfonyl, R^{16} is ethyl, Z is ethylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & OCH_3 & N & X \\ \hline \\ N & OSO_2C_2H_5 & SO_2CH_3 \\ \hline \\ C_2H_5 & \end{array}$$

The compounds Ib176.1-Ib176.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is ethylsulfonyl, R^{16} is ethyl, Z is ethylsulfonyl and R^{18} is hydrogen.

50

The compounds Ib177.1-Ib177.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that Z is ethylsulfonyl.

The compounds Ib178.1-Ib178.126, which differ from the 30 corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl and Z is ethylsulfonyl.

The compounds Ib179.1-Ib179.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is nitro and Z is ethylsulfonyl.

The compounds Ib180.1-Ib180.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that 65 R¹ is methyl, R² is methylsulfonyl and Z is ethylsulfonyl

$$\begin{array}{c|c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

The compounds Ib181.1-Ib181.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹ is methylsulfonyl and Z is ethylsulfonyl.

The compounds Ib182.1-Ib182.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro and Z is ethylsulfonyl.

The compounds Ib183.1-Ib183.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methoxy, R^2 is methylsulfonyl and Z is ethylsulfonyl.

$$\begin{array}{c} \text{Ib183} \\ \text{H}_{3}\text{C} \\ \text{N} \\ \text{OSO}_{2}\text{C}_{2}\text{H}_{5} \\ \text{CH}_{3} \end{array}$$

The compounds Ib184.1-Ib184.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 and Z are ethylsulfonyl.

The compounds Ib185.1-Ib185.126 which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that Z is iso-propylsulfonyl and R¹⁸ is hydrogen.

The compounds Ib186.1-Ib186.126, which differ from the $\,^{30}$ corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, Z is iso-propylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c} 35 \\ \text{Ib186} \\ \text{H} \\ \text{N} \\ \text{OSO}_2\text{CH}(\text{CH}_3)_2 \\ \text{CH}_3 \end{array}$$

The compounds Ib187.1-Ib187.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is nitro, Z is iso-propylsulfonyl and R^{18} is hydrogen. 50

The compounds Ib188.1-Ib188.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that $_{65}$ R¹ is methyl, R² is methylsulfonyl, Z is iso-propylsulfonyl and R¹⁸ is hydrogen.

$$\begin{array}{c} \text{Ib188} \\ \text{O} \\ \text{CH}_3 \\ \text{N} \\ \text{OSO}_2\text{CH}(\text{CH}_3)_2 \\ \text{CH}_3 \end{array}$$

The compounds Ib189.1-Ib189.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methylsulfonyl, Z is iso-propylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & SO_2CH_3 & N-X \\ \hline N & & & \\ N & & & \\ N & & & \\ OSO_2CH(CH_3)_2 & & & \\ CH_2 & & & \\ \end{array}$$

The compounds Ib190.1-Ib190.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro, Z is iso-propylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & NO_2 & N & X \\ \hline & N & & & \\ N & & & & \\ N & & & & \\ OSO_2CH(CH_3)_2 & & & \\ CI & & & & \\ CH_3 & & & & \\ \end{array}$$

The compounds Ib191.1-Ib191.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methoxy, R^2 is methylsulfonyl, Z is iso-propylsulfonyl and R^{18} is hydrogen.

O OCH₃ N
$$\times$$
 \mathbb{R}^4 \mathbb{R}^5 OSO₂CH(CH₃)₂ SO₂CH₃

The compounds Ib192.1-Ib192.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is ethylsulfonyl, Z is iso-propylsulfonyl and R¹⁸ is hydrogen.

50

The compounds Ib193.1-Ib193.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^{16} is ethyl, Z is iso-propylsulfonyl and R^{18} is hydrogen. ¹⁵

O Cl N
$$\mathbb{R}^4$$
 \mathbb{R}^5 $\mathbb{R$

The compounds Ib194.1-Ib194.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, R^{16} is ethyl, Z is iso-propylsulfonyl and R^{18} is hydrogen.

The compounds Ib195.1-Ib195.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is nitro, R^{16} is ethyl, Z is iso-propylsulfonyl and R^{18} is hydrogen.

The compounds Ib196.1-Ib196.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that 65 R¹ is methyl, R² is methylsulfonyl, R¹⁶ is ethyl, Z is iso-propylsulfonyl and R¹⁸ is hydrogen.

$$\begin{array}{c} O \\ CH_3 \\ N \\ N \\ OSO_2CH(CH_3)_2 \\ SO_2CH_3 \\ \\ C_2H_5 \end{array}$$

The compounds Ib197.1-Ib197.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methylsulfonyl, R^{16} is ethyl, Z is iso-propylsulfonyl and R^{18} is hydrogen.

The compounds Ib198.1-Ib198.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro, R^{16} is ethyl, Z is iso-propylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & NO_2 & N-X \\ \hline N & & & \\ N & & & \\ N & & & \\ OSO_2CH(CH_3)_2 & & \\ C_2H_5 & & & \\ \end{array}$$

The compounds Ib199.1-Ib199.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methoxy, R^2 is methylsulfonyl, R^{16} is ethyl, Z is iso-propylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & OCH_3 & N-X \\ \hline \\ N & \\ N & \\ N & \\ OSO_2CH(CH_3)_2 & \\ SO_2CH_3 & \\ \hline \\ C_2H_5 & \\ \end{array}$$

The compounds Ib200.1-Ib200.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is ethylsulfonyl, R^{16} is ethyl, Z is iso-propylsulfonyl and R^{18} is hydrogen.

35

50

O Cl N-X
$$\mathbb{R}^4$$
 \mathbb{R}^5 $\mathbb{S}O_2C_2H_5$ $\mathbb{S}O_2C_2H_5$ $\mathbb{S}O_2C_2H_5$ $\mathbb{S}O_2C_2H_5$ $\mathbb{S}O_2C_2H_5$ $\mathbb{S}O_2C_2H_5$

The compounds Ib201.1-Ib201.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that Z is n-propylsulfonyl and R¹⁸ is hydrogen.

O Cl N-X
$$\mathbb{R}^4$$
 20 \mathbb{R}^5 \mathbb{R}^5

The compounds Ib202.1-Ib202.126, which differ from the $\,^{30}$ corresponding compounds Ib1.1-Ib1.126 by the fact that $\,R^2$ is methylsulfonyl, Z is n-propylsulfonyl and R^{18} is hydrogen.

O CI N-X
$$\mathbb{R}^4$$
 \mathbb{R}^5 $\mathbb{S}O_2\mathrm{CH}_3$ $\mathbb{S}O_2\mathrm{CH$

The compounds Ib203.1-Ib203.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is nitro, Z is n-propylsulfonyl and R¹⁸ is hydrogen.

O Cl N-X
$$\mathbb{R}^4$$
 \mathbb{R}^5 \mathbb{R}^5 \mathbb{R}^5 \mathbb{R}^5 \mathbb{R}^6 \mathbb{R}^5 \mathbb{R}^6 \mathbb{R}^6 \mathbb{R}^6 \mathbb{R}^6 \mathbb{R}^6 \mathbb{R}^6

The compounds Ib204.1-Ib204.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that $\,^{65}$ R¹ is methyl, R² is methylsulfonyl, Z is n-propylsulfonyl and R¹⁸ is hydrogen.

$$\begin{array}{c|c} O & CH_3 & N-X \\ \hline & N & X \\ \hline & N & N \\ \hline & OSO_2C_3H_7 & SO_2CH_3 \\ \hline & CH_3 & N \\ \hline & N &$$

The compounds Ib205.1-Ib205.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methylsulfonyl, Z is n-propylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c}
O & SO_2CH_3 & N-X \\
N & & & \\
N & & & \\
N & & & \\
CH_3 & & & \\
\end{array}$$

The compounds Ib206.1-Ib206.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro, Z is n-propylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c}
O & NO_2 & N-X \\
N & NO_2 & N-X \\
N & NO_2 & N-X \\
R^4 & R^5 \\
CH_3 & CH_3
\end{array}$$

The compounds Ib207.1-Ib207.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methoxy, R^2 is methylsulfonyl, Z is n-propylsulfonyl and R^{18} is hydrogen.

OCH₃ N-X
$$\mathbb{R}^4$$
 \mathbb{R}^5 $\mathbb{S}O_2\mathrm{CH}_3$ $\mathbb{S}O_2\mathrm{CH}_3$

The compounds Ib.208.1-Ib208.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is ethylsulfonyl, Z is n-propylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c}
O & Cl & N-X \\
N & & & \\
OSO_2C_3H_7 & & & \\
CH_3 & & & & \\
\end{array}$$

The compounds Ib209.1-Ib209.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^{16} is ethyl, Z is n-propylsulfonyl and R^{18} is hydrogen.

O Cl N-X
$$\mathbb{R}^4$$
 \mathbb{R}^5 \mathbb

The compounds Ib210.1-Ib210.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, R^{16} is ethyl, Z is n-propylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & Cl & N-X \\ \hline N & N-X \\ \hline N & SO_2CH_3 \end{array}$$

The compounds Ib211.1-211.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is nitro, R^{16} is ethyl, Z is n-propylsulfonyl and R^{18} is hydrogen.

O Cl N-X
$$\mathbb{R}^4$$
 \mathbb{R}^5 \mathbb

The compounds Ib212.1-Ib212.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that 65 R¹ is methyl, R² is methylsulfonyl, R¹⁶ is ethyl, Z is n-propylsulfonyl and R¹⁸ is hydrogen.

$$\begin{array}{c|c} O & CH_3 & N-X \\ \hline \\ N & \\ N & \\ OSO_2C_3H_7 & \\ SO_2CH_3 & \\ \hline \\ C_2H_5 & \\ \end{array}$$

The compounds Ib213.1-Ib213.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methylsulfonyl, R^{16} is ethyl, Z is n-propylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & SO_2CH_3 & N-X \\ \hline & N & \\ N & OSO_2C_3H_7 \\ \hline & C_2H_5 \end{array}$$

The compounds Ib214.1-Ib214.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro, R^{16} is ethyl, Z is n-propylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & NO_2 & N-X \\ \hline N & NO_2 & NO_2 \\ \hline N & NO_2$$

The compounds Ib215.1-Ib215.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methoxy, R^2 is methylsulfonyl, R^{16} is ethyl, Z is n-propylsulfonyl and R^{18} is hydrogen.

The compounds Ib216.1-Ib216.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is ethylsulfonyl, R^{16} is ethyl, Z is n-propylsulfonyl and R^{18} is hydrogen.

50

O Cl N-X
$$\mathbb{R}^4$$
 \mathbb{R}^5 $\mathbb{S}O_2C_2H_5$ $\mathbb{S}O_2C_2H_5$ $\mathbb{S}O_2C_2H_5$ $\mathbb{S}O_2C_2H_5$

The compounds Ib217.1-Ib217.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that *Z* is n-butylsulfonyl and R¹⁸ is hydrogen.

O Cl N-X
$$\mathbb{R}^4$$
 20 \mathbb{R}^5 \mathbb{R}^5

The compounds Ib218.1-Ib218.126, which differ from the 30 corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, Z is n-butylsulfonyl and R^{18} is hydrogen.

O Cl N-X
$$\mathbb{R}^4$$
 \mathbb{R}^5 $\mathbb{S}O_2\mathrm{CH}_3$ $\mathbb{S}O_2\mathrm{CH}_3$

The compounds Ib219.1-Ib219.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is nitro, Z is n-butylsulfonyl and R¹⁸ is hydrogen.

O CI N-X
$$\mathbb{R}^4$$
 \mathbb{R}^5 \mathbb{R}^5 \mathbb{R}^5 \mathbb{R}^5 \mathbb{R}^6 \mathbb{R}^5 \mathbb{R}^6 \mathbb{R}^6 \mathbb{R}^6 \mathbb{R}^6 \mathbb{R}^6 \mathbb{R}^6

The compounds Ib220.1-Ib220.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that $_{65}$ R¹ is methyl, R² is methylsulfonyl, Z is n-butylsulfonyl and R¹⁸ is hydrogen.

$$\begin{array}{c|c} O & CH_3 & N-X \\ \hline & & & \\ N & & & \\ N & & & \\ N & & & \\ OSO_2C_4H_9 & & & \\ SO_2CH_3 & & & \\ CH_3 & & & \\ \end{array}$$

The compounds Ib221.1-Ib221.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methylsulfonyl, Z is n-butylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & SO_2CH_3 & N-X \\ \hline & & & \\ N & & & \\ OSO_2C_4H_9 & & \\ CI & & & \\ \end{array}$$

The compounds Ib222.1-Ib222.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro, Z is n-butylsulfonyl and R^{18} is hydrogen.

The compounds Ib223.1-Ib223.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methoxy, R^2 is methylsulfonyl, Z is n-butylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & OCH_3 & N-X \\ \hline \\ N & \\ N & \\ OSO_2C_4H_9 & \\ SO_2CH_3 & \\ \hline \\ CH_3 & \\ \end{array}$$

The compounds Ib224.1-Ib224.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is ethylsulfonyl, Z is n-butylsulfonyl and R^{18} is hydrogen.

O Cl N-X R⁴
$$R^5$$
 $SO_2C_2H_5$ $SO_2C_2H_5$ $SO_2C_2H_5$ $SO_2C_2H_5$ $SO_2C_2H_5$

The compounds Ib225.1-Ib225.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^{16} is ethyl, Z is n-butylsulfonyl and R^{18} is hydrogen.

OSO₂C₄H₉

$$C_{1}$$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{5}$$

The compounds Ib226.1-Ib226.126, which differ from the $_{30}$ corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, R^{16} is ethyl, Z is n-butylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c}
O & Cl & N-X \\
N-X & R^4 \\
N & SO_2CH_3
\end{array}$$

$$\begin{array}{c|c}
C_2H_5
\end{array}$$

$$\begin{array}{c|c}
OSO_2C_4H_9
\end{array}$$

The compounds Ib227.1-Ib227.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is nitro, R^{16} is ethyl, Z is n-butylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c}
O & Cl & N-X \\
N-X & R^4 \\
N & NO_2
\end{array}$$

$$\begin{array}{c|c}
O & Cl & N-X \\
N & NO_2
\end{array}$$

$$\begin{array}{c|c}
O & Cl & N-X \\
N & OSO_2C_4H_9
\end{array}$$

$$\begin{array}{c|c}
O & OSO_2C_4H_9
\end{array}$$

$$\begin{array}{c|c}
O & OSO_2C_4H_9
\end{array}$$

$$\begin{array}{c|c}
O & OSO_2C_4H_9
\end{array}$$

The compounds Ib228.1-Ib228.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that $_{65}$ R¹ is methyl, R² is methylsulfonyl, R¹⁶ is ethyl, Z is n-butylsulfonyl and R¹⁸ is hydrogen.

$$\begin{array}{c} O \\ CH_3 \\ N \\ N \\ OSO_2C_4H_9 \\ \end{array}$$

$$\begin{array}{c} Ib228 \\ N \\ SO_2CH_3 \\ \end{array}$$

The compounds Ib229.1-Ib229.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methylsulfonyl, R^{16} is ethyl, Z is n-butylsulfonyl and R^{18} is hydrogen.

The compounds Ib230.1-Ib230.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro, R^{16} is ethyl, Z is n-butylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c}
O & NO_2 & N-X \\
N & & & \\
OSO_2C_4H_9 & & & \\
C_1 & & & & \\
C_2H_5 & & & & \\
\end{array}$$

The compounds Ib231.1-Ib231.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methoxy, R^2 is methylsulfonyl, R^{16} is ethyl, Z is n-butylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & OCH_3 & N - X \\ \hline \\ N & OSO_2C_4H_9 \\ \hline \\ C_2H_5 \end{array}$$

The compounds Ib232.1-Ib232.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is ethylsulfonyl, R¹⁶ is ethyl, Z is n-butylsulfonyl and R¹⁸ is hydrogen.

50

$$\begin{array}{c|c} O & Cl & N-X \\ \hline & & & & \\ N-X & R^4 \\ \hline & & & \\ N-X & R^5 \\ \hline & & & \\ SO_2C_2H_5 & & \\ \hline & & & \\ C_2H_5 & & & \\ \end{array}$$

The compounds Ib233.1-Ib233.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that Z is iso-butylsulfonyl and R¹⁸ is hydrogen.

O Cl N-X
$$\mathbb{R}^4$$
 20 \mathbb{R}^5 OSO₂CH₂CH(CH₃)₂ \mathbb{R}^5 \mathbb

The compounds Ib234.1-Ib234.126, which differ from the 30 corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, Z is iso-butylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c} 35 \\ \text{Ib234} \\ \\ \text{OSO}_2\text{CH}_2\text{CH}(\text{CH}_3)_2} \\ \text{SO}_2\text{CH}_3 \\ \\ \text{CH}_3 \end{array}$$

The compounds Ib235.1-Ib235.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is nitro, Z is iso-butylsulfonyl and R¹⁸ is hydrogen.

O Cl N-X
$$\mathbb{R}^4$$
 \mathbb{R}^5 \mathbb{R}^5 \mathbb{R}^5 \mathbb{R}^5 \mathbb{R}^5 \mathbb{R}^5 \mathbb{R}^5 \mathbb{R}^6 \mathbb{R}^6 \mathbb{R}^6 \mathbb{R}^6 \mathbb{R}^6

The compounds Ib236.1-Ib236.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that $_{65}$ R¹ is methyl, R² is methylsulfonyl, Z is iso-butylsulfonyl and R¹⁸ is hydrogen.

$$\begin{array}{c} O & CH_3 & N-X \\ \hline \\ N & OSO_2CH_2CH(CH_3)_2 \\ \hline \\ CH_3 & SO_2CH_3 \\ \hline \\ CH_3 & \\ \end{array}$$

The compounds Ib237.1-Ib237.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methylsulfonyl, Z is iso-butylsulfonyl and R^{18} is hydrogen.

The compounds Ib238.1-Ib238.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro, Z is iso-butylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & NO_2 & N-X \\ \hline N & NO_2 & NO_2 \\ \hline N & NO_2 & NO$$

The compounds Ib239.1-Ib239.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methoxy, R^2 is methylsulfonyl, Z is iso-butylsulfonyl and R^{18} is hydrogen.

The compounds Ib240.1-Ib240.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is ethylsulfonyl, Z is iso-butylsulfonyl and R^{18} is hydrogen.

50

O Cl N-X
$$\mathbb{R}^4$$
 \mathbb{R}^5 \mathbb{R}^5 \mathbb{R}^5 \mathbb{R}^5 \mathbb{R}^4 \mathbb{R}^5 \mathbb{R}^5 \mathbb{R}^6 \mathbb{R}^5 \mathbb{R}^6 \mathbb

The compounds Ib241.1-Ib241.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R¹⁶ is ethyl, Z is iso-butylsulfonyl and R¹⁸ is hydrogen. ¹⁵

O Cl N
$$\mathbb{R}^4$$
 \mathbb{R}^5 $\mathbb{R$

The compounds Ib242.1-Ib242.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, R^{16} is ethyl, Z is iso-butylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

The compounds Ib243.1-Ib243.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is nitro, R^{16} is ethyl, Z is iso-butylsulfonyl and R^{18} is hydrogen.

The compounds Ib244.1-Ib244.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that 65 R¹ is methyl, R² is methylsulfonyl, R¹⁶ is ethyl, Z is iso-butylsulfonyl and R¹⁸ is hydrogen.

$$\begin{array}{c} O \\ CH_3 \\ N \\ N \\ OSO_2CH_2CH(CH_3)_2 \\ SO_2CH_3 \\ C_2H_5 \end{array}$$

The compounds Ib245.1-Ib245.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methylsulfonyl, R^{16} is ethyl, Z is iso-butylsulfonyl and R^{18} is hydrogen.

The compounds Ib246.1-Ib246.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is nitro, R^{16} is ethyl, Z is iso-butylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

The compounds Ib247.1-Ib247.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methoxy, R^2 is methylsulfonyl, R^{16} is ethyl, Z is iso-butylsulfonyl and R^{18} is hydrogen.

The compounds Ib248.1-Ib248.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, R^{16} is ethyl, Z is iso-butylsulfonyl and R^{18} is hydrogen.

50

The compounds Ib249.1-Ib249.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that Z is phenylsulfonyl and R¹⁸ is hydrogen.

OSO₂C₆H₅ CI
$$\stackrel{N}{\underset{C}{\bigvee}}$$
 $\stackrel{X}{\underset{R^5}{\bigvee}}$ $\stackrel{Ib249}{\underset{R^5}{\bigvee}}$ 20

The compounds Ib250.1-Ib250.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, Z is phenylsulfonyl and R^{18} is hydrogen.

The compounds Ib251.1-Ib251.126 which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is methylsulfonyl, R^2 is phenylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & CH_3 & N & X \\ \hline \\ O & CH_3 & N & X \\ \hline \\ N & N & N \\ \hline \\ OSO_2C_6H_5 & SO_2CH_3 \\ \hline \\ CH_2 & GO \end{array}$$

The compounds Ib252.1-Ib252.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that 65 R² is ethylsulfonyl, Z is phenylsulfonyl and R¹⁸ is hydrogen.

$$\begin{array}{c} O & Cl & N - X \\ N & & \\ N & & \\ OSO_2C_6H_5 & & \\ CH_3 & & \\ \end{array}$$

The compounds Ib253.1-Ib253.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^{16} is ethyl, Z is phenylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c|c} O & Cl & N & X \\ \hline & N & & & \\ N & & & & \\ N & & & & \\ OSO_2C_6H_5 & & & \\ C_2H_5 & & & & \\ \end{array}$$

The compounds Ib254.1-Ib254.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, R^{16} is ethyl, Z is phenylsulfonyl and R^{18} is hydrogen.

The compounds Ib255.1-Ib255.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is methylsulfonyl, R^{16} is ethyl, Z is phenylsulfonyl and R^{18} is hydrogen.

$$\begin{array}{c} O \\ CH_3 \\ N \\ N \\ C_2H_5 \end{array} \qquad \begin{array}{c} CH_3 \\ N \\ SO_2CH_3 \end{array} \qquad \begin{array}{c} R^4 \\ R^5 \\ \end{array}$$

The compounds Ib256.1-Ib256.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R² is ethylsulfonyl, R¹⁶ is ethyl, Z is phenylsulfonyl and R¹⁸ is hydrogen.

50

The compounds Ib257.1-Ib257.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that Z is p-toluenesulfonyl and R¹⁸ is hydrogen.

O Cl N
$$\mathbb{R}^4$$
 \mathbb{R}^5 $\mathbb{R$

The compounds Ib258.1-Ib258.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, Z is p-toluenesulfonyl and R^{18} is hydrogen.

$$\begin{array}{c} O & Cl & N & X \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

The compounds Ib259.1-Ib259.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is methylsulfonyl, Z is p-toluenesulfonyl and R^{18} is hydrogen.

$$\begin{array}{c} O & CH_{3} & N & X \\ O & CH_{3} & N & X \\ N & N & N \\ OSO_{2}(4\text{-}CH_{3}\text{-}C_{6}H_{4}) & SO_{2}CH_{3} \\ \end{array}$$

The compounds Ib260.1-Ib260.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that 65 R² is ethylsulfonyl, Z is p-toluenesulfonyl and R¹⁸ is hydrogen.

The compounds Ib261.1-Ib261.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^{16} is ethyl, Z is p-toluenesulfonyl and R^{18} is hydrogen.

$$\begin{array}{c} O \\ Cl \\ N \\ N \\ OSO_2(4\text{-}CH_3\text{--}C_6H_4) \end{array}$$

The compounds Ib262.1-Ib262.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is methylsulfonyl, R^{16} is ethyl, Z is p-toluenesulfonyl and R^{18} is hydrogen.

$$\begin{array}{c} \text{Ib262} \\ \\ \text{N} \\ \\ \text{OSO}_2(4\text{-CH}_3\text{-C}_6\text{H}_4) \end{array}$$

The compounds Ib263.1-Ib263.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^1 is methyl, R^2 is methylsulfonyl, R^{16} is ethyl, Z is p-toluenesulfonyl and R^{18} is hydrogen.

The compounds Ib264-Ib264.126, which differ from the corresponding compounds Ib1.1-Ib1.126 by the fact that R^2 is ethylsulfonyl, R^{16} is ethyl, Z is p-toluenesulfonyl and R^{18} is hydrogen.

Also particularly preferred are 3-heterocyclyl-substituted benzoyl derivatives of the formula I where:

 R^1 is halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkylthio or C_1 - C_6 -alkylsulfonyl;

in particular chlorine, methyl, methylthio or methylsulfonyl;

 $\rm R^2$ is hydrogen, nitro, halogen, $\rm C_1\text{-}C_6\text{-}alkylthio}$, $\rm C_1\text{-}C_6\text{-}alkylsulfinyl}$ or $\rm C_1\text{-}C_6\text{-}alkylsulfonyl}$;

in particular hydrogen, nitro, chlorine, methylthio, methylsulfinyl, methylsulfonyl, ethylsulfonyl or propylsulfonyl;

R³ is hydrogen;

 R^4 , R^5 are hydrogen, halogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio or COR^6 ;

in particular hydrogen, fluorine, methyl, ethyl, propyl, trifluoromethyl, chloromethyl, 1-chloroeth-1-yl, methoxy, ethoxy, ethylthio or ethoxycarbonyl;

or

R⁴ and R⁵ together form a C₂-C₆-alkanediyl chain which can be mono- to polysubstituted by C₁-C₄-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁-C₄-alkyl;

R⁶ is C₁-C₄-alkoxy;

in particular ethyl; X is O or CR¹⁰R¹¹;

Y is O, S or CR¹³R¹⁴:

O R¹ N

Шβ

Πα

 R^{1} R^{16} R^{1} R^{1} R^{2} R^{2}

II (where Z = H)

 $R_{10},\,R^{11},\,R^{13},\,R^{14}$ are hydrogen, C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl; in particular hydrogen, methyl or chloromethyl;

R⁵ and R¹³ together form a C₂-C₆-alkanediyl chain which can be mono- to polysubstituted by C₁-C₄-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁-C₄-alkyl; in particular 1,3-propanediyl;

 R^{16} is C_1 - C_6 -alkyl;

in particular methyl, ethyl, propyl, 2-methylpropyl or butyl;

Z is H or SO_2R^{17} ;

 R^{17} is C_1 - C_4 -alkyl;

in particular methyl, ethyl, propyl or 2-methylpropyl; with the exception of 4-[2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl]-1-ethyl-5-hydroxy-1H-pyrazole, 4-[2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole, 4-[2-chloro-3-(5-cyano-4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole and 4-[2-chloro-3-(4,5-dihydrothiazol-2-yl)-4-methylsulfonylbenzoyl]-1,3-dimethyl-5-hydroxy-1H-pyrazole;

and the agriculturally useful salts thereof; in particular alkali metal salts and ammonium salts.

The 3-heterocyclyl-substituted benzoyl derivatives of the formula I are obtainable by various routes, for example by the following process:

Process A:

Reaction of pyrazoles of the formula II (where Z=H) with an activated benzoic acid III α or a benxoic acid III β , which is preferably activated in situ to give the acylating product and subsequently subjecting the latter to a rearrangement reaction.

$$\begin{array}{c|c}
R^{18} & O & R^1 & N & X \\
\hline
N & N & N & R^4 \\
R^{16} & R^2 & R^2
\end{array}$$
IV

 ${\rm L}^1$ is a nucleophilically displaceable leaving group such as halogen, eg. bromine, chlorine, hetaryl, eg. imidazolyl, pyridyl, carboxylate, eg. acetate, trifluoroacetate, and the like.

The activated benzoic acid can be employed directly, as in the case of the benzoyl halides, or it can be prepared in situ, for example with dicyclohexylcarbodiimide, triphenylphosphine/azodicarboxylic ester, 2-pyridine disulfide/triphenylphosphine, carbonyldiimidazole and the like.

It may be advantageous to carry out the acylation reaction in the presence of a base. The reactants and the auxiliary base are expediently employed in equimolar amounts. A small 25 excess of the auxiliary base, for example 1.2 to 1.5 mol equivalents based on II, may be advantageous under certain circumstances.

Suitable auxiliary bases are tertiary alkylamines, pyridine or alkali metal carbonates. Examples of solvents which can be 30 used are chlorinated hydrocarbons such as methylene chloride, 1,2-dichloroethane, aromatic hydrocarbons such as toluene, xylene, chlorobenzene, ethers such as diethyl ether, methyl tert-butyl ether, tetrahydrofuran, dioxane, polar aprotic solvents such as acetonitrile, dimethylformamide, dimethyl sulfoxide, or esters such as ethyl acetate, or mixtures of these.

If benzoyl halides are employed as activated carboxylic acid component, it may be expedient to cool the reaction mixture to 0-10° C. when adding this reactant. The mixture is 40 subsequently stirred at 20-100° C., preferably at 25-50° C., until the reaction is complete. Work-up is carried out in the customary manner, for example the reaction mixture is poured into water and the product of value is extracted. Especially suitable solvents for this purpose are methylene chloride, diethyl ether and ethyl acetate. After the organic phase has been dried and the solvent removed, the crude ester can be employed without further purification for the rearrangement reaction.

Rearrangement of the esters to give the compounds of the 50 formula I is expediently carried out at from 20 to 40° C. in a solvent and in the presence of a base and, if appropriate, with the aid of a cyano compound as catalyst.

Examples of solvents which can be used are acetonitrile, methylene chloride, 1,2-dichlorethane, dioxane, ethyl 55 acetate, toluene or mixtures of these. Preferred solvents are acetonitrile and dioxane.

Suitable bases are tertiary amines such triethylamine, pyridine, or alkali metal carbonates such as sodium carbonate, potassium carbonate, all of which are preferably employed in 60 equimolar amounts or up to a fourfold excess, based on the ester. Triethylamine or alkali metal carbonate are preferably used, but by preference in a ratio of twice the equimolar amount based on the ester.

Suitable cyano compounds are inorganic cyanides such as 65 sodium cyanide, potassium cyanide, and organic cyano compounds such as acetone cyanohydrin, trimethylsilyl cyanide.

They are employed in an amount of from 1 to 50 mol percent, based on the ester. Substances which are preferably employed are acetone cyanohydrin or trimethylsilyl cyanide, for example in an amount of from 5 to 15, preferably 10, mol percent, based on the ester.

90

Work-up can be effected in a manner known per se. For example, the reaction mixture is acidified with dilute mineral acid, such as 5% strength hydrochloric acid or sulfuric acid, and extracted with an organic solvent, eg. methylene chloride or ethyl acetate. The organic extract can be extracted with 5-10% strength alkali metal carbonate solution, eg. sodium carbonate or potassium carbonate solution. The aqueous phase is acidified, and the precipitate which forms is filtered off with suction and/or extracted with methylene chloride or ethyl acetate, dried and concentrated.

(Examples of the synthesis of esters from hydroxypyrazoles and of the rearrangement of the esters are mentioned, for example, in EP-A 282 944 and U.S. Pat. No. 4,643,757). Process B:

Reaction of 3-heterocyclyl-substituted benzoyl derivatives of the formula I (where Z = H) with a compound of the formula V (where $Z = SO_2R^{17}$):

R¹⁸
O
R¹
N
N
N
OH
R²
R³
I (where Z = H)
L²—
$$SO_2R^{17}$$
V
O
R¹
N
N
N
O
R¹
R²
R⁴
R⁵
I (where Z = SO₂R¹⁷ R³
I (where Z = SO₂R¹⁷)

L² is a nucleophilically displaceable leaving group, such as halogen, eg. bromine, chlorine, hetaryl, eg. imidazolyl, pyridyl, sulfonate, eg. OSO₃R¹⁷.

The compounds of the formula V can be employed directly such as, for example, in the case of the sulfonyl halides or sulfonic anhydrides, or they can be prepared in situ, for example activated sulfonic acids (by means of sulfonic acid and dicyclohexylcarbodiimide, carbonyldiimidazole and the like).

As a rule, the starting compounds are employed in an equimolar ratio. However, it may also be advantageous to employ an excess of one or the other component.

It may be advantageous to carry out the reaction in the presence of abase. The reactants and the auxiliary base are sexpediently employed in equimolar ratios. An excess of the auxiliary base, for example 1.5 to 3 mol equivalents, based on II, may be advantageous under certain circumstances.

Suitable auxiliary bases are tertiary alkylamines such as triethylamine or pyridine, alkali metal carbonates, eg. sodium 10 carbonate or potassium carbonate, and alkali metal hydrides, eg. sodium hydride. Triethylamine and pyridine are preferably used.

Examples of suitable solvents are chlorinated hydrocarbons such as methylene chloride or 1,2-dichlorethane, aromatic hydrocarbons, eg. toluene, xylene or chlorobenzene, ethers such as diethyl ether, methyl tert-butyl ether, tetrahydrofuran or dioxane, polar aprotic solvents such as acetonitrile, dimethylformamide or dimethyl sulfoxide, or esters such as ethyl acetate, or mixtures of these.

As a rule, the reaction temperature is in the range of from 0° C. to the boiling point of the reaction mixture.

Work-up can be effected in a manner known per se to give the product.

Those pyrazoles of the formula II (where Z=H) which are 25 used as starting materials and which are not already known can be prepared by processes known per se (for example EP-A 240 001 and J. Prakt. Chem. 315, 383 (1973)).

Novel 3-heterocyclyl-substituted benzoic acid derivatives of the formula III

$$R^{19} \xrightarrow{Q} R^{1} \xrightarrow{N} X \xrightarrow{R^{4}} R^{5}$$

are those where the variables have the following meanings: $R^1,\ R^2$ are hydrogen, nitro, halogen, cyano, $C_1\text{-}C_6\text{-}alkyl,$ $C_1\text{-}C_6\text{-}haloalkyl,$ $C_1\text{-}C_6\text{-}alkoxy,$ $C_1\text{-}C_6\text{-}haloalkoxy,}$ 45 $C_1\text{-}C_6\text{-}alkylthio,$ $C_1\text{-}C_6\text{-}haloalkylsulfinyl,}$ $C_1\text{-}C_6\text{-}haloalkylsulfinyl,}$ $C_1\text{-}C_6\text{-}haloalkylsulfonyl;}$ or $C_1\text{-}C_6\text{-}haloalkylsulfonyl;}$

 R^3 is hydrogen, halogen or C_1 - C_6 -alkyl;

R⁴, R⁵ are hydrogen, halogen, cyano, nitro, C₁-C₄-alkyl, 50 C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, $di(C_1-C_4-alkoxy)-C_1-C_4$ alkyl, di $(C_1$ - C_4 -alkyl)amino- C_1 - C_4 -alkyl, [2,2-di $(C_1$ - C_4 alkyl)hydrazino-1]- C_1 - C_4 -alkyl, C_1 - C_6 -alkyliminooxy- C_1 - C_4 -alkyl, C_1 - C_4 -alkoxycarbonyl- C_1 - C_4 -alkyl, C_1 - C_4 -C₁-C₄-haloalkyl, alkylthio-C₁-C₄-alkyl, cyanoalkyl, C_3 - C_8 -cycloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 alkoxy- C_2 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_1 - C_4 -alkylcarbonyloxy, C_1 - C_4 -alkylthio, C₁-C₄-haloalkylthio, di(C₁-C₄-alkyl)amino, COR⁶, phenyl or benzyl, it being possible for the two last-mentioned substitu- 60 ents to be partially or fully halogenated and/or to have attached to them one to three of the following groups: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

or R⁴ and R⁵ together form a C₂-C₆-alkanediyl chain which can be mono- to tetrasubstituted by C₁-C₄-alkyl and/or which

can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C_1 - C_4 -alkyl;

or

R⁴ and R⁵ together with the corresponding carbon form a carbonyl or a thiocarbonyl group;

 R^6 is hydrogen, $C_1\text{-}C_4\text{-}alkyl, C_1\text{-}C_4\text{-}haloalkyl, }C_1\text{-}C_4\text{-}alkoxy, }C_1\text{-}C_4\text{-}alkoxy, }C_2\text{-}C_4\text{-}alkoxy, }C_1\text{-}C_4\text{-}haloalkoxy, }C_3\text{-}C_6\text{-}alkenyloxy, }C_3\text{-}C_6\text{-}alkynyloxy or }NR^7R^8;$

 R^7 is hydrogen or C_1 - C_4 -alkyl;

 R^8 is C_1 - C_4 -alkyl;

X is O, S, NR⁹, CO or CR¹⁰R¹¹;

Y Y is O, S, NR¹², CO or CR¹³R¹⁴;

 R^9 , R^{12} are hydrogen or C_1 - C_4 -alkyl;

R¹⁰, R¹¹, R¹³, R¹⁴ are hydrogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxycarbonyl, C₁-C₄-haloalkoxycarbonyl or CONR⁷R⁸;

or

Ш

40

 R^4 and R^9 or R^4 and R^{10} or R^5 and R^{12} or R^5 and R^{13} together form a $C_2\text{-}C_6\text{-alkanediyl}$ chain which can be monoto tetrasubstituted by $C_1\text{-}C_4\text{-alkyl}$ and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by $C_1\text{-}C_4\text{-alkyl};$

R¹⁹ is hydroxyl or a radical which can be removed by hydrolysis;

with the exception of methyl 2-chloro-3-(4,5-dihydroisox-azol-3-yl)-4-methylsulfonylbenzoate, methyl 2-chloro-3-(4,5-dihydrooxazol-2-yl)-4-methylsulfonylbenzoate and methyl 2,4-dichloro-3-(5-methylcarbonyloxy-4,5-dihydroisoxazol-3-yl)-benzoate.

Examples of radicals which can be removed by hydrolysis are alkoxy, phenoxy, alkylthio and phenylthio radicals which are unsubstituted or substituted, halides, hetaryl radicals which are bonded via nitrogen; amino, imino radicals which are unsubstituted or substituted, and the like.

Preferred are 3-heterocyclyl-substituted benzoic acid halides of the formula III α ', where L ^{1'}=halogen ($\hat{=}$ III where R ¹⁹=halogen)

where the variables R¹ to R⁵, X and Y have the meanings given under the formula III and

L¹ is halogen, in particular chlorine or bromine.

Equally preferred are 3-heterocyclyl-substituted benzoic acids of the formula IIIβ (\triangleq III where R¹⁹=hydroxyl)

HO
$$\begin{array}{c}
R^1 \\
N \\
X \\
R^5
\end{array}$$

$$\begin{array}{c}
R^4 \\
R^5
\end{array}$$

where the variables R¹ to R⁵, X and Y have the meanings given under formula III.

Equally preferred are 3-heterocyclyl-substituted benzoic esters of the formula III γ ($\stackrel{\triangle}{=}$ III where R¹⁹=C₁-C₆-alkoxy)

ΙΙΙγ

$$L^{3} \xrightarrow{Q} \begin{array}{c} R^{1} & N & X \\ & N & X \\ & & R^{5} \end{array}$$

where the variables R¹ to R⁵, X and Y have the meanings given under formula III and

 L^3 is C_1 - C_6 -alkoxy.

The specially preferred embodiments of the 3-heterocyclyl-substituted benzoic acid derivatives of the formula III with regard to the variables R¹ to R⁵, X and Y correspond to those of the 3-heterocyclyl-substituted benzoyl derivatives of the formula I.

Also preferred are 3-heterocyclyl-substituted benzoic acid derivatives of the formula III, where:

 R^1 is halogen, C_1 - C_6 -alkyl, C_1 - C_6 -alkylthio or C_1 - C_6 -alkylsulfonyl;

in particular chlorine, methyl, methylthio or methyl sulfonyl;

extraordinarily preferably chlorine;

 R^2 is hydrogen, nitro, halogen, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulfinyl or C₁-C₆-alkylsulfonyl; in particular hydrogen, nitro, chlorine, methylthio, methylsulfinyl, methylsulfonyl, ethylsulfonyl or propylsulfonyl;

extraordinarily preferably hydrogen, chlorine, methylthio, 30 methylsulfonyl, ethylsulfonyl or propylsulfonyl;

R³ is hydrogen;

 R^4 , R^5 are hydrogen, halogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, hydroxyl, C_1 - C_4 -alkylcarbonyloxy, C_1 - C_4 -alkylthio or COR^6 ;

in particular hydrogen, fluorine, methyl, ethyl, propyl, trifluoromethyl, chloromethyl, 2-chloroeth-1-yl, methoxy, ethoxy, 2-methylprop-1-oxy, hydroxyl, methylcarbonyloxy, ethylthio, formyl, methylcarbonyl, methoxycarbonyl or ethoxycarbonyl;

extraordinarily preferably hydrogen, fluorine, methyl, ethyl, trifluoromethyl, chloromethyl, 2-chloroeth-1-yl, methoxy, ethoxy, 2-methylprop-1-oxy, hydroxyl, methylcarbonyloxy, ethylthio, formyl, methylcarbonyl, methoxycarbonyl or ethoxycarbonyl;

R⁴ and R⁵ together form a C₂-C₆-alkanediyl chain which can be mono- to polysubstituted by C_1 - C_4 -alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁-C₄-alkyl;

in particular 1,4-butanediyl, 2-oxo-1,5-pentanediyl;

R⁴ and R⁵ together with the corresponding carbon atoms form a carbonyl group

R⁶ is hydrogen, C₁-C₄-alkyl or C₁-C₄-alkoxy; in particular

hydrogen, methyl, methoxy or ethoxy;
X is O, S, CO, CR¹⁰R¹¹;
Y is O, S, CR¹³R¹⁴;
R¹⁰, R¹¹, R¹³, R¹⁴ are hydrogen, C₁-C₄-alkyl, C₁-C₄-haland or C, cally and the standard of C, all and the standard or C, all and the loalkyl or C₁-C₄-alkoxycarbonyl;

in particular hydrogen, methyl, chloromethyl or methoxycarbonvl:

R⁵ and R¹³ together form a C₂-C₆-alkanediyl chain which can be mono- to polysubstituted by C₁-C₄-alkyl and/or which can be interrupted by oxygen or by a nitrogen which is unsubstituted or substituted by C₁-C₄-alkyl; in particular 1,3-propanediyl;

 R^{19} is hydroxyl, halogen or C_1 - C_6 -alkoxy;

in particular hydroxyl, chlorine, methoxy or ethoxy; with the exception of methyl 2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoate, methyl 2-chloro-3-(4, 5-dihydrooxazol-2-yl)-4-methylsulfonylbenzoate methyl 2,4-dichloro-3-(5-methylcarbonyloxy-4,5-dihydroisoxazol-3-yl)benzoate.

The benzoyl halides of the formula III α ' (where L¹=Cl, Br) can be prepared in a manner known per se by reacting the benzoic acids of the formula III with halogenating reagents such as thionyl chloride, thionyl bromide, phosgene, diphosgene, triphosgene, oxalyl chloride or oxalyl bromide.

The benzoic acids of the formula III\beta can be prepared in a known manner from the corresponding esters of the formula III γ (L³=C₁-C₆-alkoxy) by means of acid or basic hydrolysis.

Equally, the benzoic acids of the formula IIIB can be obtained by reacting corresponding bromine- or iodine-substituted compounds of the formula V, with carbon monoxide and water under elevated pressure in the presence of a palladium, nickel, cobalt or rhodium transition metal catalyst and a base.

Шβ

$$R^{1}$$
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{4}
 R^{5}
 R^{5}
 R^{6}
 R^{1}
 R^{7}
 R^{7}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}

Furthermore, it is possible to convert compounds of the formula V into the corresponding nitriles of the formula VI by a Rosenmund-von Braun reaction (cf., for example, Org. Synth. Vol III (1955), 212) and to convert these nitriles into the compounds of the formula IIIA by subsequent hydrolysis.

The esters of the formula My can be obtained by reacting arylhalogen compounds or arylsulfonates of the formula VII, where $\rm L^4$ is a leaving group such as bromine, iodine, triflate, fluorosulfonyloxy and the like with heterocyclyl stannates (Stille couplings), heterocyclyl-boron compounds (Suzuki couplings) or heterocyclyl-zinc compounds (Negishi reaction) VIII, where M is $\rm Sn(C_1\text{-}C_4\text{-}alkyl)_3$, B(OH)2, ZnHal (where Hal=chlorine, bromine) and the like, respectively, in a manner known per se (cf., for example, Tetrahedron Lett. 27. (1986), 5269) in the presence of a palladium or nickel transition metal catalyst and in the presence or absence of a base.

$$L^{3} \xrightarrow{R^{2}} L^{4} + M \xrightarrow{N-X} R^{5}$$

$$VIII \qquad (where M = Sn (C_{1}-C_{4}-Alkyl)_{3}, B(OH)_{2}, ZnHal, oSO_{2}CF_{3}, OSO_{2}F$$

$$VIII \qquad (where Hal is Cl or Br)$$

$$VIII \qquad (where M = Sn (C_{1}-C_{4}-Alkyl)_{3}, B(OH)_{2}, ZnHal, where Hal is Cl or Br)$$

$$VIII \qquad (where M = Sn (C_{1}-C_{4}-Alkyl)_{3}, B(OH)_{2}, ZnHal, Where Hal is Cl or Br)$$

Equally, it is possible to obtain esters of the formula III γ by $\,$ 60 synthesizing the heterocycle which is bonded in the 3-position.

ΠΙγ

For example, 1,2,4-oxadiazolin-3-yl derivatives (IIIy where X=O, Y=NH) can be prepared from amidoximes of 65 the formula IX by condensation with aldehydes or ketones (cf., for example, Arch. Phar. 326 (1993), 383-389).

$$L^{3} \xrightarrow{Q} R^{1} \xrightarrow{N} NH_{2}$$

$$R^{2} \xrightarrow{N} IX$$

$$L^{3} \xrightarrow{Q} R^{1} \xrightarrow{N} Q \xrightarrow{N} R$$

$$L^{3} \xrightarrow{III\gamma} R^{2}$$

$$(\text{where X=O, Y=NH})$$

Thioamides of the formula X are suitable precursors for 2-thiazolinyl derivatives I (where X=CR¹⁰R¹¹, Y=S) (cf., for example, Tetrahedron 42 (1986), 1449-1460).

$$R^{1}$$
 R^{2}
 R^{2}
 R^{3}
 R^{10}
 R^{11}
 R^{10}
 R^{11}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{2}
 R^{3}
 R^{4}
 R^{5}

2-Oxazolinyl, 2-thiazolinyl and 2-imidazolinyl derivatives (IIIγ where X=CR¹⁰R¹¹, Y=O or Y=S or Y=NH) are accessible from the carboxylic acids of the formula XI (cf., for example, Tetrahedron Let. 22 (1981), 4471-4474).

$$L^{3} \xrightarrow{R^{2}} 0 \qquad R^{3} \qquad 10$$

$$(\text{where } X = CR^{10}R^{11}, Y = O)$$

$$L^{3} \xrightarrow{\text{III}\gamma} 0 \qquad R^{1} \qquad 15$$

$$L^{3} \xrightarrow{\text{R}^{10}} R^{11} \qquad 15$$

$$R^{1} \xrightarrow{\text{N}} R^{4} \qquad 15$$

$$R^{2} \qquad 20$$

$$XI \qquad (\text{where } X = CR^{10}R^{11}, Y = S)$$

$$L^{3} \xrightarrow{\text{R}^{10}} R^{11} \qquad 25$$

$$R^{1} \xrightarrow{\text{N}} R^{4} \qquad 25$$

$$R^{1} \xrightarrow{\text{N}} R^{4} \qquad 30$$

1,3-Thiazol-5(4H)-thion-2-yl (cf., for example, Helv. Chim. Acta 69 (1986), 374-388) and 5-oxo-2-imidazolin-2-yl derivatives (cf., for example, Heterocycles 29 (1989), 1185-1189) (III where X—CR¹⁰R¹¹, Y—S or Y—NH) can be prepared by processes known from the literature from carboxylic acid halides of the formula XII where Hal is halogen, in particular from carboxylic acid chlorides.

$$L^{3} \xrightarrow{Q} R^{10} R^{11} \qquad 45$$

$$L^{3} \xrightarrow{R^{2}} R^{2} \qquad 50$$

$$L^{3} \xrightarrow{R^{10}} R^{11} \qquad Y=S)$$

$$(where X=CR^{10}R^{11}, Y=S)$$

$$L^{3} \xrightarrow{R^{10}} R^{11} \qquad 65$$

$$(where X=CR^{10}R^{11}, Y=NH) \qquad 65$$

The oximes of the formula XIII can be converted into 4,5-dihydroisoxazol-3-yl derivatives (IIIγ where X=O, Y=CR¹³R¹⁴) in a manner known per se via the hydroxamic acid chlorides XIV as intermediates. From the latter, nitrile oxides are prepared in situ, and these nitrile oxides react with alkenes to give the desired products (cf., for example, Chem. Ber. 106 (1973), 3258-3274). 1,3-Dipolar cycloaddition reactions of chlorosulfonyl isocyanate with nitrile oxides yield 1,2,4-oxadiazolin-5-on-3-yl derivatives (IIIγ where X=O, Y=NH) (cf., for example, Heterocycles 27 (1988), 683-685).

$$L^{3} \xrightarrow{Q} H$$

$$L^{3} \xrightarrow{R^{1}} R^{13} R^{14}$$

$$R^{2} \xrightarrow{R^{1}} R^{14}$$

$$R^{2} \xrightarrow{R^{1}} R^{14}$$

$$(where X=O, Y=CR^{13}R^{14})$$

$$L^{3} \xrightarrow{R^{1}} R^{1}$$

$$R^{2} \xrightarrow{R^{1}} R^{1}$$

$$R^{3} \xrightarrow{R^{1}} R^{1}$$

The aldehydes of the formula XIV can be converted into 2,4-dihydro-1,2,4-triazol-3-on-5-yl derivatives (III γ where X—NR 9 , X—NR 12) via the semicarbazones as intermediates (cf., for example, J. Heterocyclic Chem. 23 (1986), 881-883).

$$L^3$$
 R^1
 R^2
 R^3
 XIV
 L^3
 R^4
 R^9
 R^9

2-Imidazolinyl derivatives (IIIy where X=CR¹⁰R¹¹, Y=NH) can also be prepared from benzonitriles of the formula XV using known methods (cf., for example, J. Org. Chem. 52 (1987), 1017-1021).

$$L^3$$
 R^1
 R^2
 XV
 L^3
 R^{10}
 R^{11}
 R^{10}
 R^{11}
 R^4
 R^5
 R^2
 R^3
 R^4
 R^5
 R^4
 R^5

1,3-Dipolar cycloaddition reactions of diazoalkanes or nitriloimines with arylalkenes of the formula XVI can be used for synthesizing 3-pyrazolinyl derivatives (III γ where ²⁵ X=NH, Y=CHR¹³).

$$R^{3}$$
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{13}
 R^{2}
 R^{13}
 R^{2}
 R^{13}
 R^{2}
 R^{13}
 R^{2}
 R^{13}
 R^{2}
 R^{13}
 R^{2}
 R^{13}
 R^{2}

The bromine- or iodine-substituted compounds of the formula V which are used as starting compounds can be obtained 50 from corresponding anilines by methods similar to those known from the literature, for example by Sandmeyer reac-

tion, and the anilines, in turn, are synthesized by reducing suitable nitro compounds. The bromine-substituted compounds of the formula V can additionally be obtained by direct bromination of suitable starting materials (cf. Monatsh. Chem. 99 (1968), 815-822).

The nitriles of the formula VI can be obtained as described above. Equally, it is possible to synthesize them from corresponding anilines by means of a Sandmeyer reaction.

The starting compounds of the formula VII are known (cf., for example, Coll. Czech. Chem. Commun. 40 (1975), 3009-3019) or can be prepared readily by a suitable combination of known syntheses.

For example, the sulfonates VII (L⁴=OSO₂CF₃, OSO₂F) can be obtained from the corresponding phenols, which, in turn, are known (cf., for example, EP-A 195 247) or can be prepared by known methods (cf., for example, Synthesis 1993, 735-762).

The halogen compounds VII (L⁴=Cl, Br or I) can be obtained, for example, from the corresponding anilines of the formula XIX by a Sandmeyer reaction.

The amidoximes of the formula IX, the thioamides of the formula X and the carboxylic acids of the formula XI can be synthesized from the nitriles of the formula XV in a manner known per se.

Furthermore, it is possible to prepare the carboxylic acids of the formula XI from the aldehydes of the formula XIV by known processes (cf., for example, J. March, Advanced Organic Chemistry, 3rd edition (1985), p. 629 et seq., Wiley-Interscience Publication).

The carboxylic acid halides of the formula XII can be obtained from the corresponding carboxylic acids of the formula XI by methods similar to standard processes.

The oximes of the formula XIII are advantageously obtained by reacting aldehydes of the formula XIV with hydroxylamine in a manner known per se (cf., for example, J. March, Advanced Organic Chemistry, 3rd ed. (1985), pp. 805-806, Wiley-Interscience Publication).

Those aldehydes of the formula XIV which are not already known can be prepared by methods similar to known processes. Thus, they can be synthesized from methyl compounds of the formula XVII by means of bromination, for example with N-bromosuccinimide or 1,3-dibromo-5,5-dimethylhydantoin, followed by oxidation (cf. Synth. Commun. 22 (1992), 1967-1971).

The oximes of the formula XIII can also be converted into nitriles of the formula XV by processes which are known per se (cf., for example, J. March, Advanced Organic Chemistry, 3rd ed. (1985), pp. 931-932, Wiley-Interscience Publication).

Arylalkenes of the formula XVI can be synthesized starting from the halogen compounds or sulfonates of the formula VII (L⁴=Br, Cl, OSO₂CF₃, OSO₂F) by, inter alia, Heck reaction with olefins in the presence of a palladium catalyst (cf., for example, Heck, Palladium Reagents in Organic Synthesis, Academic Press, London 1985; Synthesis 1993, 735-762).

-continued

of thin field
$$R^2$$
 R^3 R^2 R^3 R^3 R^2 R^3 R^3 R^4 R^2 R^3 R^4

PREPARATION EXAMPLES

4-[2-Chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl-]-5-hydroxy-1-methyl-1H-pyrazole (compound 3.35)

43.60 g (0.13 mol) of 2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl chloride in 375 ml of anhydrous dioxane and 13.56 g (0.134 mol) of triethylamine in 375 ml of anhydrous dioxane are simultaneously added dropwise at room temperature under a protective gas atmosphere to a solution 12.74 g (0.13 mol) of 5-hydroxy-1-methylpyrazole and 300 ml of anhydrous dioxane. After the reaction mixture had been stirred for 2 hours at room temperature, it was filtered through silica gel and the residue was washed with dioxane. The eluate was concentrated in vacuo to approximately 500 ml, and 17.94 g (0.13 mol) of dried, finely pow-

dered potassium carbonate were added. After the mixture had been refluxed for 6 hours, the solvent was distilled off in vacuo and the residue was taken up in approximately 700 ml of water. Insoluble constituents were filtered off, and the pH of the filtrate was brought to 2-3 by slow addition of 10% strength hydrochloric acid. The precipitate which formed was filtered off with suction. This gave 46.16 g (92% of theory) of 4-[2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl]-5-hydroxy-1-methyl-1H-pyrazole.

 $(m.p. > 250^{\circ} C.)$

Table 3 shows the above compound and, in addition, other 3-heterocyclyl-substituted benzoyl derivatives of the formula I which were prepared, or can be prepared, in a similar manner (if the end products had not precipitated upon acidification with 10% strength hydrochloric acid, they were extracted with ethyl acetate or dichloromethane; the organic phase was subsequently dried and concentrated in vacuo):

TABLE 3

Physical data m.p. [° C.];
$\begin{array}{ccc} & & & ^{1}\!H\;NMR \\ Z & & R^{18} & & [\delta\;in\;ppm] \end{array}$
Н Н 116-117
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
H ₉ SO ₂ H 0.96 (d); 1.21 (d); 2.33 (m); 2.48 (m); 3.30 (t); 3.67 (d); 3.97 (d); 4.58 (t);
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$H_{5}SO_{2}$ H 0.97 (t), 1.12 (d); 1.63 (t); 1.94 (m); 3.29 (t); 3.76 (q); 4.14 (t); 4.60 (t); 7.42 (d), 7.48 (d); 7.51 (s).
Н Н 70-75
H H 65-70
H H 230-235 H H 210-215
H H 95-100
H_5SO_2 H 70-75
H_5SO_2 H 78-83
$\begin{array}{cccc} H_9SO_2 & H & 1.24\ (2d);\ 1.53\ (t); \\ & 2.52\ (m);\ 3.05\ (dd); \\ & 3.29\ (s);\ 3.52\ (dd); \\ & 3.73\ (d);\ 4.24\ (q), \\ & 5.05\ (m);\ 7.49\ (s); \\ & 7.66\ (d);\ 8.18\ (d). \end{array}$
H ₅ SO ₂ H 0.96 (t); 1.53 (d); 1.68 (t); 1.95 (sext); 3.07 (dd); 3.32 (s); 3.58 (dd); 3.86 (quart); 4.15 (t); 5.03 (m); 7.46 (d); 7.64 (d); 8.18 (d).
H H 220-225
Н Н 82-86
H H 70-75
H H 68-73 H H 45-50
H H 220-225
H H 170-175
Н Н 65-70
Н Н 55-60
H H 58-63
H_5SO_2 H 78-83

TABLE 3-continued

					R ¹⁸ N N N R ¹		\mathbb{R}^1	\mathbb{R}^{N}	\mathbb{R}^{R^4}		I
No.	R^1	\mathbb{R}^2	\mathbb{R}^3	X	$ m R^4$	R^5	Y	R ¹⁶	z	R ¹⁸	Physical data m.p. [° C.]; ¹ H NMR [δ in ppm]
3.27	Cl	SO ₂ CH ₃	Н	0	Н	Н	CH ₂	n-C ₄ H ₉	$\mathrm{i\text{-}C_4H_9SO_2}$	Н	0.94 (t); 1.19 (d); 1.22 (t); 1.38 (m); 1.74 (br); 1.91 (m); 2.53 (m); 3.26 (s); 4.45 (t); 3.76 (d); 4.18 (t); 4.62 (t); 7.45 (s); 7.64 (d); 8.16 (d).
3.28	Cl	SO ₂ CH ₃	Н	Ο	Н	Н	CH_2	i-C ₄ H ₉	$\mathrm{i\text{-}C_4H_9SO_2}$	Н	0.96 (d); 1.21 (d); 2.33 (m); 2.51 (m); 3.28(s); 3.44 (t); 3.75 (d); 3.99 (d); 4.61 (t); 7.45 (s); 7.66 (d); 8.17 (d).
3.29	Cl	SO ₂ CH ₃	Н	Ο	Н	Н	CH ₂	i - C_4H_9	$\mathrm{C_2H_5SO_2}$	Н	7.50 (d), 8.17 (d). 0.97 (d); 1.66 (t); 2.36 (m); 3.29 (s); 3.43 (t); 3.82 (q); 3.99 (d); 4.60 (t); 7.47 (s); 7.68 (d); 8.18 (d).
3.30	Cl	SO ₂ CH ₃	Н	0	Н	Н	CH ₂	CH ₃	C ₂ H ₅ SO ₂	Н	1.68(t); 3.29 (s); 3.43 (t); 3.78 (q); 3.92 (s); 3.63 (t); 7.46 (s); 7.62 (d); 8.17 (d).
3.31	Cl	SO_2CH_3	Н	Ο	Н	Н	CH ₂	CH_3	$\mathrm{i\text{-}C_4H_9SO_2}$	Н	1.23 (d); 2.53 (m), 3.28 (s); 3.43 (t); 3.70 (d); 3.91 (s); 4.61 (t); 7.48 (s); 7.66 (d); 8.18 (d).
3.32 3.33	Cl Cl	Cl Cl	H H	O O	H H	H H	CH ₂ CH ₂	n-C ₃ H ₇ CH ₃	H H	H CH ₃	119-121 115-117
3.34	Cl	NO_2	Н	o	Н	Н	CH ₂	Сп ₃ С ₂ Н ₅	Н	Сп ₃	217-218
3.35	Cl Cl	SO ₂ CH ₃ Cl	H H	O O	H H	Н	CH_2	CH ₃	H H	Н	>250 125-128
3.36 3.37	Cl	SO ₂ CH ₃	Н	0	Н	H H	CH ₂ CH ₂	C_2H_5 C_2H_5	n-C ₃ H ₇ SO ₂	H H	78-83
3.38	Cl	SO ₂ CH ₃	Н	О	Н	Н	CH ₂	C_2H_5	$ ext{C}_2 ext{H}_5 ext{SO}_2$	Н	1.52 (t); 1.68 (t); 3.29 (s); 3.43 (t); 3.82 (q); 4.24 (q); 4.63 (t); 7.48 (s); 7.65 (d); 8.07 (d).
3.39 3.40	Cl Cl	$SO_2C_2H_5$ $SO_2C_2H_5$	H H	0	CH ₃ CH ₃	CH ₃ H	CH ₂ CH ₂	CH ₃ CH ₃	H H	H H	>200 220-223
3.41	Cl	SO ₂ C ₂ H ₅	Н	Ö	CH ₃	Н	CH ₂	C_2H_5	H	Н	>230
3.42	Cl	SO ₂ -n-C ₃ H ₇	Н	O	CH ₃	Н	CH ₂	CH ₃	Н	Н	1.12 (t); 1.53 (d); 1.76 (quin); 3.18 (dd); 3.38 (t); 3.55 (dd); 3.73 (s); 5.04 (m); 5.55 (s, br.); 7.37(s); 7.68 (d); 8.13 (d).
3.43	Cl Cl	SO ₂ -n-C ₃ H ₇	Н	O CH ₂	$\mathrm{CH_3}$ H	Н	${ m CH_2}$ O	$\mathrm{C_2H_5}$ $\mathrm{CH_3}$	н	Н	1.07 (t); 1.50 (m); 1.78 (quin); 3.07 (dd); 3.39 (t); 3.55 (dd); 4.12 (t); 5.08 (m); 7.38 (s); 7.69 (d); 8.11 (d).
	Ç1	2020113	**	2112	**	4.1	~	U113	**	11	

TABLE 3-continued

No.	\mathbb{R}^1	\mathbb{R}^2	R^3	X	R^4	\mathbb{R}^5	Y	R^{16}	Z	R^{18}	Physical data m.p. [° C.]; ¹H NMR [δ in ppm]
3.45 ^{a)}	Cl	SO_2CH_3	Н	$C(CH_3)_2$	Н	Н	О	CH ₃	Н	Н	1.33 (s); 3.40 (s); 4.17 (s); 7.43 (s);
3.46 3.47 3.48 3.49 3.50 3.51 3.52 3.53 3.54 ^a)	Cl Cl Cl Cl Cl Cl Cl	SO ₂ CH ₃ SO ₂ CH ₃	H H H H H H H	O O O O O O O O C(CH ₃) ₂	н н н н н н	H H H H H H H	CH ₂	C ₂ H ₅ C ₂ H ₅ C ₂ H ₅ C ₂ H ₅ C ₂ H ₅ CH ₃ CH ₃ CH ₃ CH ₃ C ₂ H ₅	Na^{+} K^{+} Li^{+} NH_{4}^{+} Na^{+} K^{+} Li^{+} NH_{4}^{+} H	H H H H H H H	7.79 (d); 8.04 (d). 218-220 193 >230 170-175 >240 206-214 >240 1.27 (t); 1.36 (s); 3.41 (q); 4.01 (q);
3.55 3.56 3.57 3.58 3.59 3.60 3.61 3.62 3.63 3.64 3.65 3.66 3.67 3.68 3.69	CI CI CI CI CI CI CI CI CI CI CI CI CI C	SO ₂ CH ₃ SO ₂ CH ₃ SO ₂ CH ₃ SO ₂ CH ₃ SO ₂ C ₂ H ₅ SO ₂ C ₃ H ₇ SO ₂ C-1-C ₃ H ₇ SO ₂ CH ₃ SO ₂ CH ₃ SO ₂ CH ₃ SO ₂ CH ₃	H H H H H H H H H H H	0 0 0 0 0	H H (CH ₂) (CH ₂) (CH ₂) (CH ₃) (CH ₃ H H H C(CH ₂) (CH ₃) H CH H C(H ₂) (CH ₃) CH ₃	—(C) ₄ —) ₄ — CH ₂) ₂ — CH ₃ CH ₃ H H	H ₂) ₃ CH— H ₂) ₃ CH— CH ₂ CH ₂	C ₂ H ₅ CH ₃ C ₂ H ₅ C ₂ H ₅ C ₂ H ₅ CH ₃ C ₂ H ₅ CH ₃ C ₂ H ₅ CH ₃ C ₂ H ₅ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	н н н н н н н н	H H H H H H H H H H H H H H H H H H H	4.18 (s); 7.47 (s); 7.83 (d); 8.07 (d). 99-104 95-100 230-235 190-195 95-100 <230 198-200 215-218 213-215 186-190 84-86 90-95 70-75 50-55 3.18-3.99(11H); 5.78 (1H);
3.70	Cl	SO₂CH₃	Н	0	СН3	Н	CHCH₂Cl	CH ₃	н	Н	7.50 (1H); 7.81 (1H); 8.09 (1H). 1.52 (3H); 3.30-4.12 (8H); 4.36 (1H);
3.71	Cl	SO₂CH₃	Н	0	СН3	Н	CHCH₂Cl	C_2H_5	н	Н	4.93 (1H); 7.49 (1H); 7.81 (1H); 8.09 (1H). 1.27 (3H); 1.55 (3H); 3.28-4.02 (7H); 4.37 (1H); 4.92 (1H);
3.72 3.73 3.74	Cl Cl Cl	SO ₂ CH ₃ SO ₂ CH ₃ SO ₂ CH ₃	H H H	C(CH ₃) ₂ O O	Н ОС ₂ Н ₅ ОС ₂ Н ₅	Н Н Н	O CH ₂ CH ₂	СН ₃ СН ₃ С ₂ Н ₅	н н н	Н Н Н	7.48 (1H); 7.80 (1H); 8.07 (1H). 132-135 95-100 1.16 (3H); 1.27 (3H); 3.20-4.00 (9H); 5.89 (m); 7.50 (1H);
3.75 3.76 3.77 3.78 3.79	Cl Cl Cl Cl	SO ₂ CH ₃ SO ₂ C ₂ H ₅ SO ₂ -n-C ₃ H ₇ SO ₂ -n-C ₃ H ₇ SO ₂ -n-C ₃ H ₇	H H	O C(CH ₃) ₂ O O O	C_2H_5 H CH_3 CH_3 CH_3	C_2H_5 H CH_3 CH_3 H	CH ₂ O CH ₂ CH ₂ CH ₂	C_2H_5 CH_3 C_2H_5 CH_3 CH_3	К* Н Н Н Н	H H H H	7.82 (1H); 8.07 (1H). 200-205 120-123 152-158 172-176 188-205

TABLE 3-continued

$ \begin{array}{c c} & & \\ N & & \\ N & & \\ R^{16} & Z & R^3 \end{array} $

No.	R^1	\mathbb{R}^2	\mathbb{R}^3	X	R^4	\mathbb{R}^5	Y	R ¹⁶	z	R ¹⁸	Physical data m.p. [° C.]; ¹H NMR [δ in ppm]
3.80	Cl	SCH3	Н	О	Н	Н	CH_2	C ₂ H ₅	Н	Н	1.29 (t); 2.56 (s) 3.28 (t); 3.93 (q); 4.49 (t); 7.40 (s); 7.43 (d); 7.55 (d).
3.81	C1	SO_2CH_3	Η	O	CH ₂ Cl	Η	CH_2	C_2H_5	Н	Η	78-82
3.82	CH ₃	Н	Н	CH ₂	H	Н	s	C_2H_5	Н	Н	1.44 (t); 2.50 (s); 3.49 (t); 4.09 (q); 4.53 (t); 7.35 (m); 7.48 (d); 7.62 (d).
3.83	C1	SO_2CH_3	Η	O	CH ₂ Cl	Η	CH_2	CH_3	H	Η	81-85
3.84	Cl	SCH_3	Η	О	Н	Η	CH_2	$\mathrm{CH_3}$	H	Η	151-153
3.85	Cl	SOCH ₃	Н	Ο	Н	Н	CH_2	C ₂ H ₅	Н	Н	1.28 (t); 2.82 (s); 3.40 (m); 3.92 (m); 4.52 (t); 7.45 (s); 7.82 (d); 8.10 (d).
3.86	CH_3	SO_2CH_3	Η	O	Н	Η	CH_2	CH_3	H	Η	205-210
3.87	Cl	Cl	Η	CH_2	Н	Η	S	C_2H_5	Н	Η	173-179
3.88	Cl	SCH ₃	Н	CH ₂	Н	Н	S	C ₂ H ₅	Н	Н	1.43 (t); 2.51 (s); 3.59 (t); 4.08 (q); 4.51 (t); 7.22 (d); 7.41 (s); 7.50 (d).
3.89	Cl	SO ₂ CH ₃	Н	CH ₂	Н	Н	S	C ₂ H ₅	Н	Н	1.50 (t); 3.28 (s); 3.62 (t); 4.10 (q); 4.49 (t); 7.36 (s); 7.68 (d); 8.19 (d).
3.90	CH_3	SO_2CH_3	Η	O	H	Η	CH_2	C_2H_5	Н	Η	174-180
3.91	Cl	SO_2CH_3	Η	O	CH ₂ Cl	Η	CH_2	$\overline{\mathrm{CH}_{3}}$	Н	Η	77-83
3.92	Cl	SO_2CH_3	Η	O	F	Η	CH_2	CH_3	Н	Η	
3.93	Cl	SO_2CH_3	Η	O	F	Η	CH_2	C_2H_5	Н	Η	
3.94	Cl	SO_2CH_3	H	0	F	F	CH_2	CH_3	H	Η	
3.95	Cl	SO ₂ CH ₃	H	0	F	F	CH ₂	C_2H_5	H	Н	400 404
3.96	Cl	SO ₂ CH ₃	H	0	CH ₃	Н	CHCH ₃	C_2H_5	H	Н	183-184
3.97 3.98	Cl Cl	SO ₂ CH ₃	H H	0	CF_3	H H	CH ₂	CH ₃	H H	H H	223-225 183-184
3.99	Cl	SO ₂ CH ₃ SO ₂ CH ₃	Н	Ö	CF ₃ SC ₂ H ₅	Н	CH_2 CH_2	C_2H_5 CH_3	Н	Н	195-196
3.100	Cl	SO ₂ CH ₃	H	Ö	SC_2H_5 SC_2H_5	Н	CH ₂	C_2H_5	H	H	199-200
3.101	Cl	SO ₂ CH ₃	Н	ŏ	CH ₃	Н	CHCH ₃	CH ₃	H	Н	230-233
3.102	C1	SO ₂ CH ₃	Н	О	CHCl(CH ₃)	Η	CH ₂	C_2H_5	Н	Н	102-107
3.103	C1	SO_2CH_3	Η	O	CHCl(CH ₃)	Η	CH_2	$\overline{\mathrm{CH}_{3}}$	Н	Η	80-85
3.104	Cl	SO_2CH_3	Η	О	$n-C_3H_7$	Η	CH_2	CH_3	H	Η	
3.105	Cl	SO_2CH_3	Η	О	$n-C_3H_7$	Η	CH_2	C_2H_5	Н	Η	
3.106	Cl	SO_2CH_3	H	O	H	H	CH_2	CH ₃	*NH ₂ (CH ₃) ₂	Η	200
3.107	Cl	SO ₂ CH ₃	H	0	H	H	CH_2	CH ₃	*NH ₂ (CH ₂ CH ₂ OH)	H	187
3.108	Cl	SO ₂ CH ₃	H	0	Н	Н	CH ₂	CH ₃	+4-NH ₃ (CH ₂ CH ₂ OCH ₂ CH ₂ OH)	Н	180
3.109	SCH₃	SCH₃	Н	О	Н	Н	CH_2	CH ₃	Н	Н	2.33 (s); 2.51 (s); 3.40 (t); 3.70 (s); 4.58 (t); 5.15 (brs); 7.21 (s); 7.31 (d); 7.42 (d).
3.110	SCH ₃	SCH ₃	Н	Ο	Н	Н	CH_2	C ₂ H ₅	Н	Н	1.38 (t); 2.33 (s); 2.49 (s); 3.41 (t); 4.10 (q); 4.58 (t); 7.25 (s); 7.32 (d); 7.41 (d); 7.82 (brs).
3.111	SO_2CH_3	SO_2CH_3	Η	О	Н	Η	CH_2	CH_3	H	Η	oil
3.112	SO_2CH_3	SO_2CH_3	Η	О	Н	Η	CH_2	C_2H_5	Н	Η	oil

 $^{{\}it a}{\it)} Prepared from 2-chloro-3-(1'-chloro-2',2'-dimethylethylaminocarbonyl)-4-methylsulfonylbenzoyl chloride with two equivalents of potassium carbonate.$

The syntheses of some starting materials are given below:

2-Chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl chloride (compound 4.5)

Step a) 2-Chloro-3-methyl-4-methylthioacetophenone

A solution of 157 g (2 mol) of acetyl chloride in 420 mol of 1,2-dichlorethane was added dropwise to a suspension of 286 g (2.14 mol) of aluminum trichloride in 420 ml of 1,2-dichlorethane at 15-20° C. A solution of 346 g (2 mol) of 2-chloro-6-methylthiotoluene in 1 l of 1,2-dichlorethane was subsequently added dropwise. After the reaction mixture had been stirred for 12 hours, it was poured into a mixture of 3 l of ice and 1 l of concentrated HCl. The mixture was extracted with methylene chloride, and the organic phase was washed with water, dried with sodium sulfate and concentrated. The residue was distilled in vacuo. This gave 256 g (60% of theory) of 2-chloro-3-methyl-4-methylthioacetophenone.

(m.p.: 46° C.)

Step b) 2-Chloro-3-methyl-4-methylsulfonylacetophenone

163.0 g (0.76 mol) of 2-chloro-3-methyl-4-methylthioacetophenone were dissolved in 1.51 of glacial acetic acid, 18.6 g of sodium tungstate were added, and 173.3 g of a 30% strength hydrogen peroxide solution were added dropwise with cooling. Stirring was continued for 2 days and the mixture was subsequently diluted with water. The solid which had precipitated was filtered off with suction, washed with water and dried. This gave 164.0 g (88% of theory) of 2-chloro-3-methyl-4-methylsulfonylacetophenone.

(m.p.: 110-111° C.)

Step c) 2-Chloro-3-methyl-4-methylsulfonylbenzoic

82 g (0.33 mol) of 2-chloro-3-methyl-4-methylsulfonylacetophenone were dissolved in 700 ml of dioxane, and 1 l of a 12.5% strength sodium hypochlorite solution was added at room temperature. Stirring was continued for 1 hour at 80° C. After cooling, two phases formed, of which the bottom phase was diluted with water and acidified weakly. The solid which had precipitated was filtered off with suction, washed with water and dried. This gave 60 g (73% of theory) of 2-chloro-3-methyl-4-methylsulfonylbenzoic acid.

(m.p.: 230-231° C.)

Step d) Methyl 2-chloro-3-methyl-4-methylsulfonylbenzoate

100 g (0.4 mol) of 2-chloro-3-methyl-4-methylsulfonylbenzoic acid were dissolved in 11 of methanol and hydrogen 55 chloride gas was passed in for 5 hours at reflux temperature. The mixture was subsequently concentrated. This gave 88.5 g (84% of theory) of methyl 2-chloro-3-methyl-4-methylsulfonylbenzoate.

(m.p.: 107-108° C.)

Step e) Methyl 3-bromomethyl-2-chloro-4-methylsulfonylbenzoate

82~g~(0.1~mol) of methyl 2-chloro-3-methyl-4-methylsul- 65~fonylbenzoate are dissolved in 21~of tetrachloromethane, and 56~g~(0.31~mol) of N-bromosuccinimide are added in portions

112

with exposure to light. The reaction mixture was filtered, the filtrate was concentrated, and the residue was taken up in 200 ml of methyl tert-butyl ether. The solution was treated with petroleum ether and the solid which had precipitated was filtered off with suction and dried. This gave 74.5 g (70% of theory) of methyl 3-bromomethyl-2-chloro-4-methylsulfonylbenzoate.

(m.p.: 74-75° C.)

Step f) Methyl 2-chloro-3-formyl-4-methylsulfonylbenzoate

A solution of 41.0 g (0.12 mol) of methyl 3-bromomethyl-2-chloro-4-methylsulfonylbenzoate in 250 ml of acetonitrile was treated with 42.1 g (0.36 mol) of N-methylmorphline N-oxide. The batch was stirred for 12 hours at room temperature and subsequently concentrated, and the residue was taken up in ethyl acetate. The solution was extracted with water, dried with sodium sulfate and concentrated. This gave 31.2 g (94% of theory) of methyl 2-chloro-3-formyl-4-methylsulfonylbenzoate

(m.p.: 98-105° C.)

Step g) 2-Chloro-3-hydroxyiminomethyl-4-methyl-sulfonylbenzoic acid

15.00 g (54 mmol) of methyl 2-chloro-3-formyl-4-methylsulfonylbenzoate and 4.20 g (60 mmol) of hydroxylamine hydrochloride were taken up in 300 ml of methanol, and a solution of 3.18 g (30 mmol) of sodium carbonate in 80 ml of water was added dropwise. After the mixture had been stirred for 12 hours at room temperature, the methanol was distilled off, the residue was diluted with water and the mixture was extracted with diethyl ether. After the organic phase had been dried, the solvent was removed. This gave 14.40 g (91% of theory) of methyl 2-chloro-3-hydroxyiminomethyl-4-methylsulfonylbenzoate.

(m.p.: 126-128° C.).

60

Step h) Methyl 2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoate (compound 4.3)

Ethylene was passed for 30 minutes at 15-20° C. into a solution of 158.0 g (0.54 mol) of methyl 2-chloro-3-hydroxyiminomethyl-4-methylsulfonylbenzoate and 1 l of dichloromethane. After 1.6 g of sodium acetate had been added, 454 ml of sodium hypochlorite solution were added dropwise at 10° C. while simultaneously passing in ethylene. Ethylene was subsequently passed in at 10° C. for a further 15 minutes.

After the mixture had been stirred for 12 hours, the phases were separated, and the organic phase was washed with water, dried and concentrated. This gave 156.5 g (90% of theory) of methyl 2-chloro-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoate.

(¹H NMR (δ in ppm): 3.24 (s); 3.42 (t); 3.99 (s); 4.60 (t); 7.96 (d); 8.10 (d)).

Step i) 2-Chloro-3-(4,5-dihydroisoxazol-3-yl)-4methylsulfonylbenzoic acid (compound 4.4)

A solution of 32.8 g of sodium hydroxide, dissolved in 330 ml of methanol, was slowly added dropwise to a mixture of 170.0 g (0.54 mol) of methyl 2-chloro-3-(4,5-dihydroisox-azol-3-yl)-4-methylsulfonylbenzoate and 1 l of methanol at 40-45° C. The suspension was stirred for 5 hours at 50° C. After the solvent had been distilled off, the residue was taken up in 1.5 l of water, and the aqueous phase was extracted three

times with ethyl acetate. The aqueous phase was acidified with hydrochloric acid and extracted three times with ethyl acetate. The combined organic phases were subsequently washed to neutrality with water, dried and concentrated. This gave 148.8 g (91% of theory) of 2-chloro-3-(4,5-dihydroisox-azol-3-vl)-4-methylsulfonylbenzoic acid.

(1H NMR (δ in ppm): 3.26 (s); 3.45 (t); 4.63 (t); 8.15 (s); 8.53 (s, br)).

Step j) 2-Chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl chloride (compound 4.5)

74.8 g (0.63 mol) of thionyl chloride in 50 ml of dry toluene were added dropwise at 50° C. to a solution of 139.0 g of 2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoic acid, 1 ml of dimethylformamide and 1 l of dry toluene. After the mixture had been heated for 6 hours at 110° C., the solvent was distilled off. This gave 2-chloro-3-(4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl chloride in quantitative yield.

(1 H NMR (δ in ppm): 3.25 (s); 3.46 (t); 4.62 (t); 8.21 (dd)).

2-Chloro-3-(5-methyl-4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl chloride (compound 4.39)

Step a) Methyl 2-chloro-3-(5-methyl-4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoate (compound 4.25)

Propene was passed for 30 minutes at room temperature into a solution of 15.0 g (52 mmol) of methyl 2-chloro-3hydroxyiminomethyl-4-methylsulfonylbenzoate and 200 ml of dichloromethane. After 1.6 g of sodium acetate had been added, 42.8 ml of sodium hypochlorite solution were added 35 dropwise at room temperature while simultaneously passing in propene. Propene was subsequently passed in for a further 15 minutes at room temperature. After the mixture had been refluxed for 3 hours, it was stirred for 12 hours at room temperature, propene was again passed in for 5 hours under reflux, and the mixture was stirred for a further 12 hours at room temperature. After the phases had been separated, the organic phase was washed with water, dried and concentrated. This gave 15.5 g (89% of theory) of methyl 2-chloro-45 (5-methyl-4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoate.

(m.p.: 130-135° C.)

Step b) 2-Chloro-3-(5-methyl-4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoic acid (compound 4.26)

A solution of 3.52 g (88 mmol) of sodium hydroxide, dissolved in 100 ml of methanol, was slowly added dropwise to a mixture of 15.00 g (45 mmol) of methyl 2-chloro-3-(5-55 methyl-4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoate and 200 ml of methanol. The suspension was stirred for 48 hours at room temperature. After the solvent had been distilled off, the residue was taken up in water, and the aqueous phase was washed three times with ethyl acetate. The aqueous phase was acidified with hydrochloric acid and extracted three times with ethyl acetate. The combined organic phases were subsequently washed to neutrality with water, dried and concentrated. This gave 13.20 g (92% of theory) of 2-chloro-3-(5-methyl-4,5-dihydroisoxazol-3-yl)-65 4-methylsulfonylbenzoic acid.

(m.p.: 173-178° C.)

114

Step c) 2-Chloro-3-(5-methyl-4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoyl chloride (compound 4.39)

5.7 g (51 mmol) of thionyl chloride were added dropwise at room temperature to a solution of 13.0 g (41 mmol) of 2-chloro-3-(5-methyl-4,5-dihydroisoxazol-3-yl)-4-methyl-sulfonylbenzoic acid, 1 ml of dimethylformamide and 250 ml of dry toluene. The mixture was subsequently refluxed until the reaction was complete. After cooling, the solvent was distilled off. This gave 14.2 g of 2-chloro-3-(5-methyl-4,5-dihydroisoxazol-3-yl)-4-methyl-benzoyl chloride in quantitative yield.

2-Chloro-3-(1'-chloro-2',2'-dimethylethylaminocarbonyl)-4-methylsulfonylbenzoyl chloride

Step a) Methyl 2-chloro-3-hydroxycarbonyl-4-methylsulfonylbenzoate

13.8 g (0.11 mol) of sodium hydrogen phosphate monohydrate in 170 ml of water, 49.3 g (0.43 mol) of 30% strength hydrogen peroxide solution and 66.2 g (0.59 mol) of 80% strength aqueous sodium chlorite solution were added in succession at 5° C. to a solution of 115.3 g (0.42 mol) of methyl 2-chloro-3-formyl-4-methylsulfonylbenzoate in 2000 ml of acetonitrile. The reaction solution was subsequently stirred for 1 hour at 5° C. and for 12 hours at room temperature. The pH was then brought to 1 with 10% strength hydrochloric acid, and 1500 ml of aqueous 40% strength sodium hydrogen sulfite solution were added. After the mixture had been stirred for 1 hour at room temperature, the aqueous phase was extracted three times with ethyl acetate. The combined organic phases were washed with sodium hydrogen sulfite solution and dried. After the solvent had been distilled off, 102.0 g of methyl 2-chloro-3-hydroxycarbonyl-4-methylsulfonylbenzoate were obtained.

 $(^{1}H \text{ NMR } (\delta \text{ in ppm}): 3.34 (s); 3.93 (s); 8.08 (s); 14.50 (s, br.).)$

Step b) Methyl 2-chloro-3-chlorocarbonyl-4-methylsulfonylbenzoate

2 drops of dimethylformamide and 11.9 g (0.1 mol) of thionyl chloride were added to a solution of 6.0 g (0.021 mol) of methyl 2-chloro-3-hydroxycarbonyl-4-methylsulfonylbenzoate and 50 ml of dry toluene. The solution was refluxed for 4 hours. After the solvent had been removed in vacuo, 6.2 g of methyl 2-chloro-3-chlorocarbonyl-4-methylsulfonylbenzoate were obtained.

(¹H NMR (δ in ppm): 3.21 (s); 4.02 (s); 8.02 (d); 8.07 (d).)

Step c) Methyl 2-chloro-3-(1'-hydroxy-2',2'-dimethylethylaminocarbonyl)-4-methylsulfonylbenzoate

A solution of 7.80 g (25 mmol) of methyl 2-chloro-3-chlorocarbonyl-4-methylsulfonylbenzoate was added dropwise at 0-5° C. to a solution of 4.54 g (50 mmol) of 2,2-dimethylethanolamine in 40 ml of dichloromethane. After the reaction solution had been stirred for 6 hours at room temperature, it was extracted three times with water, dried and concentrated. This gave 8.20 g (80% of theory) of methyl 2-chloro-3-(1'-hydroxy-2',2' dimethylethylaminocarbonyl)-4-methylsulfonylbenzoate.

(m.p.: 70-72° C.)

Step d) Methyl 2-chloro-3-(1'-chloro-2',2'-dimethylethylaminocarbonyl)-4-methylsulfonylbenzoate

A mixture of 6.9 g (20 mmol) of methyl 2-chloro-3-(1'-hydroxy-2',2'-dimethylethylaminocarbonyl)-4-methylsulfonylbenzoate and 5 ml of thionyl chloride was stirred for 6 hours at room temperature. The solution was diluted with 50 ml of dichloromethane and subsequently concentrated. The residue was dissolved in 20 ml of dichloromethane. The addition of cyclohexane resulted in a crystalline precipitate which was filtered off with suction and dried. This gave 6.4 g (88% of theory) of methyl 2-chloro-3-(1'-chloro-2',2'-dimethylethylaminocarbonyl)-4-methylsulfonylbenzoate.

Step e) 2-Chloro-3-(4',4'-dimethyl-4',5'-dihydrox-azol-2-yl)-4-methylsulfonylbenzoic acid (compound 4.38)

A solution of 5.82 g (15 mmol) of methyl 2-chloro-3-(1'-chloro-2',2'-dimethylethylaminocarbonyl)-4-methylsulfonylbenzoate and 0.81 g (20 mmol) of sodium hydroxide in 80 ml of methanol was stirred for 8 hours at room temperature. After the solvent had been distilled off, the residue was taken up in water and the mixture was washed three times with ethyl acetate. The aqueous phase was acidified with hydrochloric acid and extracted three times with ethyl acetate. After the organic phase had been dried, the solvent was removed in vacuo. This gave 3.10 g (56% of theory) of 2-chloro-3-(4',4'-dimethyl-4',5'-dihydrooxazol-2-yl)-4-methylsulfonylbenzoic acid.

(¹H NMR (δ in ppm): 1.34 (s); 3.40 (s); 4.13 (s); 8.07 (s); 13.95 (s, br)).

Step f) 2-Chloro-3-(1'-chloro-2',2'-dimethylethylaminocarbonyl)-4-methylsulfonylbenzoyl chloride

A solution of 3.00 g (9 mmol) of 2-chloro-3-(4',4'-dimethyl-4',5'-dihydrooxazol-2-yl)-4-methylsulfonylbenzoic acid, 1.43 g of thionyl chloride and 1 drop of dimethylformamide in 80 ml of dry toluene was refluxed for 3 hours. After cooling, the solvent was distilled off in vacuo. This gave 3.43 g (86% of theory) of 2-chloro-3-(1'-chloro-2',2'-dimethylethylaminocarbonyl)-4-methylsulfonylbenzoyl chloride.

Methyl 2-chloro-3-(1,3,4-oxathiazolin-2-on-5-yl)-4methylsulfonylbenzoate (compound 4.22)

Step a) Methyl 3-aminocarbonyl-2-chloro-4-methylsulfonylbenzoate

Ammonia was passed for 2 hours into a solution of 15.0 g (48 mmol) of methyl 2-chloro-3-chlorocarbonyl-4-methyl-sulfonylbenzoate and 300 ml of dry dioxane. The precipitate formed was filtered off with suction and the filtrate was concentrated. This gave 15.2 g of methyl 3-aminocarbonyl-2-chloro-4-methylsulfonylbenzoate in quantitative yield.

Step b) Methyl 2-chloro-3-(1,3,4-oxathiazolin-2-on-5-yl)-4-methylsulfonylbenzoate

9.80~g~(75~mmol) of chlorocarbonylsulfenyl chloride were added dropwise to a solution of 4.37 g (15 mmol) of methyl 3-aminocarbonyl-2-chloro-4-methylsulfonylbenzoate in 150 ml of dry toluene. After the mixture had been stirred for 48 $\,$ 65 hours under reflux, the solvent was removed in vacuo and the residue was chromatographed on silica gel (eluent: ethyl

116

acetate/cyclohexane=1/1). This gave 3.70 g (70% of theory) of methyl 2-chloro-3-(1,3,4-oxathiazolin-2-on-5-yl)-4-methylsulfonylbenzoate.

Methyl 2-chloro-4-methylsulfonyl-3-(4,5-dihydrooxazol-3-yl)-benzoate (compound 4.41)

At room temperature, 41.8 g (0.41 mol) of triethylamine and then 31.1 g (0.10 mol) of methyl 2-chloro-3-chlorocarbonyl-4-methylsulfonylbenzoate in 150 ml of toluene were added dropwise to 26.6 g (0.13 mol) of 1-amino-2-bromoethane hydrobromide in 5.00 ml of toluene. The mixture was heated under reflux for 5 hours and then stirred at room temperature for 12 hours, another 5.0 g (0.02 mol) of 1-amino-2-bromoethane hydrobromide were added and the mixture was heated under reflux for 7.5 hours. The reaction mixture was allowed to cool, diluted with ethyl acetate, washed with water, dried and concentrated. The residue was then recrystallized from methyl tert-butyl ether/ethyl acetate. 14.5 g (46% of theory) of methyl 2-chloro-4-methylsulfonyl-3-(4,5-dihydrooxazol-2-yl)benzoate were obtained.

2-Chloro-3-(5-methoxy-5-methyl-4,5-dihydroisox-azol-3-yl)-4-methylsulfonylbenzoic acid (compound 4.60)

Step a) Methyl 2-chloro-3-(5-methoxy-5-methyl-4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoate

7.3 g (102 mmol) of 2-methoxy-1-propene, 28 ml of sodium hypochlorite solution (12.5% strength) and a spatulatip of sodium acetate were added successively to 10.0 g (34 mmol) of methyl 2-chloro-3-(hydroxyiminomethyl)-4-methylsulfonylbenzoate in 200 ml of methylene chloride. The mixture was stirred at room temperature for 12 hours, the solvent was removed and the residue was taken up in ethyl acetate, washed with water, dried and concentrated. The residue was chromatographed over silica gel (eluent: cyclohexane:ethyl acetate=3:2). This gave 5.8 g (47% of theory) of methyl 2-chloro-3-(5-methoxy-5-methyl-4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoate.

(mp.: 100-105° C.)

45

Step b) 2-Chloro-3-(5-methoxy-5-methyl-4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoate

At reflux temperature, 5.5 g (15.0 mmol) of methyl 2-chloro-3-(5-methoxy-5-methyl-4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoate in 100 ml of pyridine were added dropwise to 5.0 g (37.5 mmol) of lithium iodide in 200 ml of pyridine. The mixture was stirred at this temperature for 4 hours and then cooled, the solvent was distilled off and the residue was taken up in toluene and reconcentrated. The residue was subsequently admixed with water and washed with methylene chloride, and the pH was adjusted to 1 using hydrochloric acid. The aqueous phase was extracted with methylene chloride and the resulting organic phase was dried and concentrated. This gave 4.7 g (90% of theory) of 2-chloro-(5-methoxy-5-methyl-4,5-dihydroisoxazol-3-yl)-4-methylsulfonylbenzoate.

(mp.: 40-45° C.)

Methyl 2-chloro-3-(2-methyl-2H-1,3,4-dioxazol-5-yl)-4-methylsulfonylbenzoate (compound 4.44)

8.0 g (27.4 mmol) of methyl 2-chloro-3-(hydroxyiminomethyl)-4-methylsulfonylbenzoate in 150 ml of methylene

chloride were admixed dropwise with 16.0 g (27.4 mmol) of a 12.5% strength sodium hypochlorite solution, and a spatulatip of sodium acetate was added. After 1 hour, 34.4 g (0.74 mol) of acetaldehyde were added a little at a time within a period of 36 hours, and the mixture was slowly heated to 55° C. The mixture was subsequently stirred at room temperature for 48 hours, washed with water, dried and concentrated. The residue was then taken up in methylene chloride, 10.0 g (0.23 mol) of acetaldehyde and a spatula-tip of sodium acetate were added and the mixture was heated under reflux for 8 hours. After 72 hours, a further 10.0 g 5 (0.23 mol) of acetaldehyde

118

were added and the mixture was stirred at room temperature. The mixture was subsequently washed with water, dried and concentrated. The residue was passed through silica gel (eluent: isopropanol:cyclohexane=1:9). This gave 5.0 g (55% of theory) of methyl 2-chloro-3-(2-methyl-2H-1,3,4-dioxazol-5-yl)-4-methylsulfonylbenzoate.

Table 4 which follows lists the compounds which have been described above and also further benzoic acid derivatives of the formula III which were prepared, or can be prepared, by a similar method.

TABLE 4

 $R^{19} \xrightarrow{R^1} \xrightarrow{N} \xrightarrow{X} \xrightarrow{R^4}$

No.	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	X	R^4	\mathbb{R}^5	Y	R ¹⁹	Physical data m.p. [° C.]; ¹H NMR [ð in ppm]
4.1	Cl	Cl	Н	О	Н	Н	CH_2	OCH_3	3.29 (t); 3.91 (s); 4.58 (t); 7.46 (d); 7.83 (d).
4.2	Cl	Cl	Н	О	Н	Н	CH_2	ОН	3.28 (t); 4.60 (t); 7.02 (s, br); 7.46 (d); 7.98 (d).
4.3	Cl	SO_2CH_3	Н	О	Н	Н	CH_2	OCH ₃	3.24 (s); 3.42 (t); 3.99 (s); 4.60 (t); 7.96 (d); 8.10 (d).
4.4	Cl	SO ₂ CH ₃	Η	О	Н	Н	CH_2	ОН	3.26 (s); 3.45 (t); 4.63 (t); 8.15 (s); 8.53 (s, br).
4.5	Cl	SO ₂ CH ₃	H	0	Н	H	CH ₂	Cl	3.25 (s); 3.46 (t); 4.62 (t); 8.21 (dd).
4.6	Cl	Cl	Н	C(CH ₃) ₂	Н	Н	0	ОН	1.31 (s); 4.16 (s); 7.69 (d); 7.90 (d); 13.8 (s, br).
4.7	Cl	SO ₂ C ₂ H ₅	Η	0	CH ₃	CH ₃	CH ₂	OCH ₃	1.25 (t); 1.57 (s); 3.21 (s); 3.42 (q); 3.99 (s); 7.94 (d); 8.07 (d).
4.8	Cl	$SO_2C_2H_5$	Н	0	CH ₃	CH ₃	CH ₂	ОН	1.13 (t); 1.47 (s); 3.15 (s); 3.43 (q); 8.06 (s); 13.8 (s, br).
4.9	Cl	$SO_2C_2H_5$	Н	О	Н	Н	CH_2	OCH ₃	1.28 (t); 3.41 (m); 4.02 (s); 4.62 (t); 7.95 (d); 8.06 (d).
4.10 4.11	Cl Cl	SO ₂ C ₂ H ₅	H H	0	H CH ₃	H H	CH₂ CH₂	OH OCH ₃	137-140 1.26 (t); 1.53 (d); 3.06 (dd);
		$SO_2C_2H_5$			J		<u> </u>	,	3.42 (q); 3.49 (dd); 5.05 (m); 7.95 (d); 8.07 (d).
4.12	Cl	$SO_2C_2H_5$	Η	0	CH ₃	H	CH_2	OH	140-143
4.13	Cl	SO ₂ CH ₃	Η	CH ₂	Н	Н	О	OCH ₃	3.30 (s); 3.98 (s); 4.11 (t); 4.55 (t); 7.97 (d); 8.08 (d).
4.14	Cl	SO ₂ CH ₃	Н	CH ₂	Н	Н	О	ОН	3.38 (s); 4.00 (t); 4.46 (t); 8.08 (s).
4.15	Cl	SO_2CH_3	Н	О	Н	Н	CH_2	ОН	3.30 (s); 3.35 (t); 4.15 (s, br); 4.50 (t); 8.05 (s).
4.16	Cl	SO ₂ -n-C ₃ H ₇	Η	О	CH ₃	CH ₃	CH ₂	OCH ₃	0.95 (t); 1.47 (s); 1.58 (quin); 3.12 (s); 3.31 (s); 3.43 (t); 3.93 (s); 8.09 (dd).
4.17	Cl	SO ₂ -n-C ₃ H ₇	Н	О	CH ₃	CH ₃	CH_2	ОН	0.93 (t); 1.47 (s); 1.58 (quin); 3.15 (s); 3.42 (t); 8.05 (s).
4.18	Cl	SO ₂ -n-C ₃ H ₇	Н	О	Н	Н	CH_2	OCH ₃	0.92 (t); 1.55 (quin); 3.39 (m); 3.93 (s); 4.50 (t); 8.08 (dd).
4.19	Cl	SO ₂ -n-C ₃ H ₇	Η	О	H	H	CH_2	OH	148-150
4.20	Cl	SO ₂ -n-C ₃ H ₇	Η	О	CH ₃	Н	CH ₂	OCH ₃	0.93 (t); 1.49 (d); 1.58 (quin); 2.94 (dd); 3.42 (m); 3.93 (s); 4.97 (m); 8.10 (dd).
4.21	Cl	SO ₂ -n-C ₃ H ₇	Η	О	CH ₃	Н	CH ₂	ОН	0.94 (t); 1.39 (d); 1.58 (quin); 2.96 (dd); 3.50 (m); 4.95 (m); 8.05 (s).
4.22	Cl	SO_2CH_3	Η	S	=O		O	OCH_3	3.24 (s); 4.02 (s); 8.14 (dd).
4.23	Cl	SO_2CH_3	Η	O	COOC ₂ H ₅	H	CH_2	OCH_3	118-121
4.24	Cl	SO ₂ CH ₃	Н	0	COOC ₂ H ₅	Н	CH_2	OH	400 405
4.25	Cl	SO ₂ CH ₃	H	0	CH ₃	H	CH_2	OCH ₃	130-135
4.26	Cl	SO_2CH_3	Η	О	CH_3	Н	CH_2	OH	173-178

III

TABLE 4-continued

$$R^{19}$$
 R^{1}
 R^{2}
 R^{2}

No.	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	X	\mathbb{R}^4	R^5	Y	R ¹⁹	Physical data m.p. [° C.]; ¹ H NMR [ð in ppm]
4.27	Cl	SO₂CH₃	Н	О	CH ₃	CH ₃	CH_2	OCH ₃	1.57 (s); 3.18 (s); 3.27 (s);
4.28	Cl	SO_2CH_3	Н	О	CH_3	$\mathrm{CH_3}$	CH_2	ОН	4.01 (s); 7.97 (d); 8.12 (d). 1.48 (s); 3.15 (s); 3.34 (s); 8.08 (dd).
4.29	Cl	SO_2CH_3	Н	Ο	C_2H_5	Н	CH_2	OCH ₃	0.97 (t); 1.72 (m); 3.10 (dd); 3.32 (s); 3.37 (dd); 4.72 (m); 8.08 (dd).
4.30	Cl	SO_2CH_3	Н	О	Н	—(CH ₂)3—CH—	OCH ₃	1.57 (m); 1.81 (m); 2.21 (m); 3.20 (s); 4.02 (s); 4.32 (t); 5.35 (dd); 7.92 (d); 8.18 (d).
4.31	Cl	SO_2CH_3	Н	O	Н	—(CH ₂)3—CH—	ОН	1.72 (m); 2.01 (m); 3.27 (s); 4.24 (t); 5.23 (dd); 8.05 (d); 8.15 (d); 13.8 (s, br).
4.32	Cl	SO_2CH_3	Н	O	—(CH ₂) ₂ —O-	—(CH2) ₂ —	CH_2	OCH ₃	2.00 (m); 3.23 (s); 3.27 (s), 3.72 (m); 4.00 (s); 7.96 (d); 8.04 (d).
4.33	Cl	SO_2CH_3	Η	O	(CH ₂) ₂ O	—(CH ₂) ₂ —	CH ₂	OH	78-83
4.34	Cl	SO ₂ CH ₃	Н	О	—(CH ₂		CH_2	OCH ₃	1.78 (m); 2.24 (m); 3.27 (s); 3.36 (s); 3.98 (s); 7.94 (d); 8.12 (d).
4.35	Cl	SO ₂ CH ₃	Н	О	—(CH ₂	-) ₉ —	CH_2	ОН	1.76 (m); 2.05 (m); 3.30 (s); 3.33 (s); 8.09 (dd).
4.36	Cl	SO ₂ CH ₃	Н	O	C_2H_5	C ₂ H ₅	CH ₂	OCH ₃	1.00 (t); 1.85 (m); 3.13 (s); 3.27 (s); 3.98 (s); 7.94 (d); 8.11 (d).
4.37	Cl	SO_2CH_3	Η	О	C_2H_5	C_2H_5	CH_2	ОН	0.91 (t); 1.76 (m); 3.12 (s); 3.33 (s); 8.07 (dd); 13.75 (s, br).
4.38	Cl	SO_2CH_3	Η	$C(CH_3)_2$	Н	Н	О	ОН	1.34 (s); 3.40 (s); 4.13 (s); 8.07 (s); 13.95 (s, br).
4.39	Cl	SO ₂ CH ₃	Η	О	CH ₃	H	CH_2	C1	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4.40	Cl	SO_2CH_3	Η	CH_2	Н	H	o Î	OH	>260
4.41	Cl	SO ₂ CH ₃	Η	CH ₂	Н	Н	О	OCH ₃	3.29 (3H); 3.96 (3H): 4.12 (2H); 4.55 (2H); 7.98 (1H); 8.09 (1H).
4.42	Cl	SCH_3	Η	O	H	H	CH2	OCH_3	202-203
4.43	Cl	SO₂CH₃	Н	О	COOMe	Н	CHCO ₂ CH ₃	OCH ₃	1.05 (3H); 1.35 (3H); 3.19 (3H); 4.01 (3H); 4.09 (2H); 4.35 (2H); 5.06 (1H); 5.77 (1H); 8.08 (1H); 8.17 (1H).
4.44	Cl	SO ₂ CH ₃	Н	О	CH_3	Н	О	OCH ₃	1.78 (3H); 3.30 (3H); 3.98 (3H); 6.40 (1H); 8.08 (1H); 8.15 (1H).
4.45	Cl	SO_2CH_3	Η	O	CHO	H	$CHCH_3$	OCH_3	80-85
4.46	Cl	SO ₂ CH ₃	Н	0	CH ₃	Н	CHCH ₂ Cl	OCH ₃	1.65 (3H); 3.27 (3H); 3.50 (2H); 4.00 (3H); 4.22 (1H); 4.88/5.08 (1H); 7.99 (1H); 8.12 (1H).
4.47 4.48	Cl Cl	SO ₂ CH ₃	H H	0 0	CH₃ CHO	H H	CHCH ₂ Cl	OH	100-105 180-185
4.49	Cl	SO ₂ CH ₃ SO ₂ CH ₃	Н	Ο	SC ₂ H ₅	Н	CHCH ₃ CH ₂	OH OCH ₃	1.30 (3H); 2.75 (2H); 3.25 (1H); 3.34 (3H); 3.78 (1H); 3.94 (3H); 6.22 (1H); 8.15 (2H).
4.50	Cl	SO_2CH_3	Η	O	SC_2H_5	H	CH_2	OH	65-67
4.51	Cl	SO ₂ CH ₃	Н	О	CH ₃	Н	CHCH ₃	OCH ₃	1.01 (3H); 1.28 (3H); 3.33 (4H); 3.96 (3H); 4.98 (1H); 8.12 (1H); 8.20 (1H).
4.52	Cl	SO ₂ CH ₃	H	0	CH ₃	H	CHCH ₃	OH	68-75
4.53	Cl	SO ₂ CH ₃	H	0	OCOCH ₃	H	CH ₂	OCH ₃	105-110
4.54	Cl	SO ₂ CH ₃	Н	0	H	H	CH ₂	OH	45.50
4.55 4.56	Cl Cl	SO ₂ CH ₃	H H	0	OCOCH ₃ OCH ₃	H H	CH ₂	OH OH	45-50 60-65
4.57	Cl	SO ₂ CH ₃ SO ₂ CH ₃	Н	0	CHCl(CH ₃)	H H	CH_2 CH_2	OCH ₃	1.63 (3H); 3.23 (3H); 3.50 (2H);
		2 3					-		3.99 (3H); 4.25 (1H); 4.83/5.03 (1H); 7.96 (1H); 8.13 (1H).
4.58	Cl	SO_2CH_3	Η	О	CHCl(CH ₃)	Н	CH_2	ОН	1.56 (3H); 3.33 (3H); 3.43 (2H); 4.36 (1H); 4.93 (1H); 8.10 (2H).
4.59	Cl	$\mathrm{SO}_2\mathrm{CH}_3$	Η	О	CH_3	OCH_3	CH_2	OCH_3	100-105

Physical data

TABLE 4-continued

No.	R^1	R^2	\mathbb{R}^3	X	R^4	R^5	Y	R ¹⁹	m.p. [° C.]; H NMR [ð in ppm]
4.60	Cl	SO ₂ CH ₃	Н	0	CH ₃	OCH ₃	CH_2	ОН	40-45
4.61	Cl	SO_2CH_3	Η	O	CF ₃	$OCOCH_3$	CH_2	OCH_3	60-65
4.62	Cl	SCH_3	Η	O	H	H	CH_2	OH	
4.63	Cl	SO₂Me	Н	О	COCH ₃	Н	CH_2	OCH ₃	2.36 (3H); 3.25 (3H); 3.66 (2H); 4.01 (3H); 5.20 (1H); 8.01 (1H); 8.12 (1H).
4.64	Cl	SO_2CH_3	Η	O	CF_3	H	CH_2	OCH_3	156
4.65	Cl	SO_2CH_3	Η	O	CF_3	H	CH_2	OH	170
4.66	Cl	SO_2CH_3	Η	O	F	F	CH_2	OCH_3	
4.67	Cl	SO_2CH_3	Η	O	F	F	CH_2	OH	
4.68	Cl	SO_2CH_3	Η	O	F	Н	CH_2	OCH_3	142-143
4.69	Cl	SO_2CH_3	Η	O	F	H	CH_2	OH	
4.70	Cl	SO_2CH_3	Η	O	CH ₂ Cl	H	CH_2	OCH_3	107-110
4.71	Cl	SO_2CH_3	Η	O	CH ₂ Cl	H	CH_2	OH	60-65
4.72	Cl	SO_2CH_3	Η	O	OCH_3	H	CH_2	OCH_3	105-110
4.73	Cl	SO_2CH_3	Η	O	OC_2H_5	H	CH_2	OCH_3	155-160
4.74	Cl	SO_2CH_3	Η	CH_2	H	H	S	OCH_3	
4.75	CH3	H	Η	C = O	H	H	S	OCH_3	112-120
4.76	Cl	SO ₂ CH ₃	Η	О	CF ₃	ОН	CH ₂	ОН	3.38 (s); 3.56 (d); 3.79 (d); 8.16 (s); 8.67 (s, br).
4.77	Cl	SO_2CH_3	Η	O	O -t- C_4H_9	Н	CH_2	OCH_3	130-135
4.78	Cl	SO ₂ CH ₃	Н	О	O-t-C ₄ H ₉	Н	CH_2	ОН	1.25 (s); 3.05 (dd); 3.34 (s); 3.45 (dd); 6.17 (m); 8.08 (s).
4.79	Cl	SO ₂ CH ₃	Н	О	CH ₃	Н	CHCH ₃	OCH ₃	1.01 (d); 1.28 (d); 3.35 (m); 3.96 (s); 4.99 (m); 8.12 (d); 8.20 (d).
4.80	Cl	SO_2CH_3	Η	O	CH_3	H	CHCH ₃	OH	68-75
4.81	Cl	SO ₂ CH ₃	Н	О	SC_2H_5	Н	CH ₂	OCH ₃	1.30 (t); 2.77 (q); 3.25 (dd); 3.34 (s); 3.78 (dd); 3.94 (s); 6.22 (m), 8.24 (s).
4.82	Cl	SO_2CH_3	Η	O	SC_2H_5	H	CH_2	OH	65-67
4.83	SCH ₃	SCH ₃	Н	О	H	Н	CH ₂	OCH ₂ CH ₃	1.28 (t); 2.30 (s); 2.46 (s); 3.28 (t); 4.31 (q); 4.45 (t); 7.42 (d); 7.68 (d).
4.84	SCH ₃	SCH ₃	Н	О	Н	Н	CH ₂	ОН	2.32 (s); 2.48 (s); 3.28 (t); 4.42 (t); 7.48 (d); 7.64 (d); 13.2 (s).
4.85	SO ₂ CH ₃	SO ₂ CH ₃	Н	О	Н	Н	CH ₂	ОН	3.25 (s); 3.35 (s); 3.44 (t); 8.05 (d); 8.45 (d).

The 3-heterocyclyl-substituted benzoyl derivatives of the formula I and their agriculturally useful salts are suitable as 50 herbicides, both in the form of isomer mixtures and in the form of the pure isomers. The herbicidal compositions comprising compounds of the formula I effect very good control of vegetation on non-crop areas, especially at high rates of application. In crops such as wheat, rice, maize, soybeans and cotton they act against broad-leaved weeds and grass weeds without damaging the crop plants substantially. This effect is observed especially at low rates of application.

Depending on the application method in question, the compounds of the formula I, or herbicidal compositions comprising them, can additionally be employed in a further number of crop plants for eliminating undesirable plants. Examples of suitable crops are the following:

Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus officinalis, Beta vulgaris spec. altissima, Beta vulgaris 65 spec. rapa, Brassica napus var. napus, Brassica napus var. napobrassica, Brassica rapa var. silvestris, Camellia sinen-

sis, Carthamus tinctorius, Carya illinoinensis, Citrus limon, Citrus sinensis, Coffea arabica (Coffea canephora, Coffea liberica), Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis guineensis, Fragaria vesca, Glycine max, Gossypium hirsutum, (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium), Helianthus annuus, Hevea brasiliensis, Hordeum vulgare, Humulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec., Manihot esculenta, Medicago sativa, Musa spec., Nicotiana tabacum (N. rustica), Olea europaea, Oryza sativa, Phaseolus lunatus, Phaseolus vulgaris, Picea abies, Pinus spec., Pisum sativum, Prunus avium, Prunus persica, Pyrus communis, Ribes sylvestre, Ricinus communis, Saccharum officinarum, Secale cereale, Solanum tuberosum, Sorghum bicolor (s. vulgare), Theobroma cacao, Trifolium pratense, Triticum aestivum, Triticum durum, Vicia faba, Vitis vinifera and Zea mays.

Moreover, the compounds of the formula I can also be used in crops which tolerate the action of herbicides due to breeding including genetic engineering methods.

The compounds of the formula I, or the herbicidal compositions comprising them, can be employed, for example, in the form of directly sprayable aqueous solutions, powders, suspensions, also highly-concentrated aqueous, oily or other suspensions or dispersions, emulsions, oil dispersions, pastes, dusts, materials for spreading or granules, by means of spraying, atomizing, dusting, spreading or pouring. The use forms depend on the intended purposes; in any case, they should guarantee the finest possible distribution of the active ingredients according to the invention.

The herbicidal compositions comprise a herbicidally active amount of at least one compound of the formula I or of an agriculturally useful salt of I and auxiliaries conventionally used for the formulation of crop protection products.

Suitable inert auxiliaries are essentially:

mineral oil fractions of medium to high boiling point such as kerosene and diesel oil, furthermore coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, eg. paraffins, tetrahydronaphthalene, alky
into 100,000 parts by weight of water and finely distributing it therein gives an aqueous dispersion which comprises 0.02% by weight of the active ingredient.

II. 20 parts by weight of the compound No. 3.9 are dissolved

lated naphthalenes and their derivatives, alkylated benzenes and their derivatives, alcohols such as methanol, ethanol, propanol, butanol and cyclohexanol, ketones such as cyclohexanone, strongly polar solvents, eg. amines such as N-me-

thylpyrrolidone and water.

Aqueous use forms can be prepared from emulsion concentrates, suspensions, pastes, wettable powders or water-dispersible granules by adding water. To prepare emulsions, pastes or oil dispersions, the substances, as such or dissolved in an oil or solvent, can be homogenized in water by means of wetting agent, tackifier, dispersant or emulsifier. However, it is also possible to prepare concentrates composed of active substance, wetting agent, tackifier, dispersant or emulsifier and, if appropriate, solvent or oil, and these concentrates are suitable for dilution with water.

Suitable surfactants (adjuvants) are the alkali metal, alkaline earth metal and ammonium salts of aromatic sulfonic acids, eg. ligno-, phenol-, naphthalene- and dibutylnaphthalenesulfonic acid, and of fatty acids, of alkyl- and alkylaryl 40 sulfonates, of alkyl sulfates, lauryl ether sulfates and fatty alcohol sulfates, and salts of sulfated hexa-, hepta- and octadecanols, and of fatty alcohol glycol ether, condensates of sulfonated naphthalene and its derivatives with formaldehyde, condensates of naphthalene, or of the naphthalene- 45 sulfonic acids, with phenol and formaldehyde, polyoxyethylene octylphenyl ether, ethoxylated isooctyl-, octyl- or nonylphenol, alkylphenyl, tributylphenyl polyglycol ether, alkylaryl polyether alcohols, isotridecyl alcohol, fatty alcohol ethylene oxide condensates, ethoxylated castor oil, polyoxy- 50 ethylene alkyl ethers or polyoxypropylene alkyl ethers, lauryl alcohol polyglycol ether acetate, sorbitol esters, lignin-sulfite waste liquors or methylcellulose.

Powders, materials for spreading and dusts can be prepared by mixing or concomitantly grinding the active substances 55 with a solid carrier.

Granules, eg. coated granules, impregnated granules and homogeneous granules, can be prepared by binding the active ingredients to solid carriers. Solid carriers are mineral earths such as silicas, silica gels, silicates, talc, kaolin, limestone, 60 lime, chalk, bolus, loess, clay, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic material, fertilizers such as ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas and products of vegetable origin such as cereal meal, tree bark 65 meal, wood meal and nutshell meal, cellulose powders or other solid carriers.

124

The concentrations of the compounds of the formula I in the ready-to-use products can be varied within wide ranges. In general, the formulations comprise approximately from 0.001 to 98% by weight, preferably 0.01 to 95% by weight, of at least one active ingredient. The active ingredients are employed in a purity of from 90% to 100%, preferably 95% to 100% (according to NMR spectrum).

The formulation examples below illustrate the preparation of such products:

- I. 20 parts by weight of the compound No. 3.2 are dissolved in a mixture composed of 80 parts by weight of alkylated benzene, 10 parts by weight of the adduct of 8 to 10 mol of ethylene oxide and 1 mol of oleic acid N-monoethanolamide, 5 parts, by weight of calcium dodecylbenzene-sulfonate and 5 parts by weight of the adduct of 40 mol of ethylene oxide and 1 mol of castor oil. Pouring the solution into 100,000 parts by weight of water and finely distributing it therein gives an aqueous dispersion which comprises 0.02% by weight of the active ingredient.
 - II. 20 parts by weight of the compound No. 3.9 are dissolved in a mixture composed of 40 parts by weight of cyclohexanone, 30 parts by weight of isobutanol, 20 parts by weight of the adduct of 7 mol of ethylene oxide and 1 mol of isooctylphenol and 10 parts by weight of the adduct of 40 mol of ethylene oxide and 1 mol of castor oil. Pouring the solution into 100,000 parts by weight of water and finely distributing it therein gives an aqueous dispersion which comprises 0.02% by weight of the active ingredient.
 - III. 20 parts by weight of the active ingredient No. 3.10 are dissolved in a mixture composed of 25 parts by weight of cyclohexanone, 65 parts by weight of a mineral oil fraction of boiling point 210 to 280° C. and 10 parts by weight of the adduct of 40 mol of ethylene oxide and 1 mol of castor oil. Pouring the solution into 100,000 parts by weight of water and finely distributing it therein gives an aqueous dispersion which comprises 0.02% by weight of the active ingredient.
 - IV. 20 parts by weight of the active ingredient No. 3.16 are mixed thoroughly with 3 parts by weight of sodium diisobutylnaphthalenesulfonate, 17 parts by weight of the sodium salt of a lignosulfonic acid from a sulfite waste liquor and 60 parts by weight of pulverulent silica gel and the mixture is ground in a hammer mill. Finely distributing the mixture in 20,000 parts by weight of water gives a spray mixture which comprise 0.1% by weight of the active ingredient.
 - V. 3 parts by weight of the active ingredient No. 3.21 are mixed with 97 parts by weight of finely divided kaolin. This gives a dust which comprises 3% by weight of the active ingredient.
 - VI. 20 parts by weight of the active ingredient No. 3.22 are mixed intimately with 2 parts by weight of calcium dode-cylbenzenesulfonate, 8 parts by weight of fatty alcohol polyglycol ether, 2 parts by weight of the sodium salt of a phenol/urea/formaldehyde condensate and 68 parts by weight of a paraffinic mineral oil. This gives a stable oily dispersion.
 - VII. 1 part by weight of the active ingredient No. 3.34 is dissolved in a mixture composed of 70 parts by weight of cyclohexanone, 20 parts by weight of ethoxylated isooctylphenol and 10 parts by weight of ethoxylated castor oil. This gives a stable emulsion concentrate.
 - VIII. 1 part by weight of active ingredient No. 3.35 is dissolved in a mixture composed of 80 parts by weight of cyclohexanone and 20 parts by weight of Wettol® EM 31 (=nonionic emulsifier based on ethoxylated castor oil). This gives a stable emulsion concentrate.

The compounds of the formula I, or the herbicidal compositions comprising them, can be applied pre- or post-emergence. If the active ingredients are less well tolerated by certain crop plants, application techniques may be used in which the herbicidal compositions are sprayed, with the aid of the spray apparatus, in such a way that they come into as little contact as possible, if any, with the leaves of the sensitive crop plants while reaching the leaves of undesirable plants which grow underneath, or the bare soil (post-directed, lay-by).

Depending on the intended aim of the control measures, the 10 season, the target plants and the growth stage, the application rates of the compound of the formula I are from 0.001 to 3.0, preferably 0.01 to 1.0 kg/ha of active substanz (a.s.).

To widen the spectrum of action and to achieve synergistic effects, the 3-heterocyclyl-substituted benzoyl derivatives of the formula I can be mixed and applied jointly with a large number of representatives of other groups of herbicidally or growth-regulatory active ingredients. Suitable components in mixtures are, for example, 1,2,4-thiadiazoles, 1,3,4-thiadiazoles, amides, aminophosphoric acid and its derivatives, ami- 20 notriazoles, anilides, aryloxy-/hetaryloxyalkanic acids and their derivatives, benzoic acid and its derivatives, benzothiadiazinones, 2-(hetaroyl/aroyl)-1,3-cyclohexandiones, hetaryl aryl ketones, benzylisoxazolidinones, meta-CF₃-phenyl derivatives, carbamates, quinolinecarboxylic acid and its 25 derivatives, chloroacetanilides, cyclohexenone oxime ether derivatives, diazines, dichloropropionic acid and its derivatives, dihydrobenzofuranes, dihydrofuran-3-ones, dinitroanilines, dinitrophenols, diphenyl ethers, dipyridyls, halocarboxylic acids and their derivatives, ureas, 3-phenyluracils, 30 imidazoles, imidazolinones, N-phenyl-3,4,5,6-tetrahydrophthalimides, oxadiazoles, oxiranes, phenols, aryloxy- and hetaryloxyphenoxypropionic esters, phenylacetic acid and its derivatives, 2-phenylpropionic acid and its derivatives, pyrazoles, phenylpyrazoles, pyridazines, pyridinecarboxylic acid 35 and its derivatives, pyrimidyl ethers, sulfonamides, sulfonylureas, triazines, triazinones, triazolinones, triazolcarboxamides and uracils.

Moreover, it may be advantageous to apply the compounds of the formula I, alone or in combination with other herbicides, in the form of a mixture with additional other crop protection agents, for example with pesticides or agents for controlling phytopathogenic fungi or bacteria. Also of interest is the miscibility with mineral salt solutions which are employed for treating nutritional and trace element deficiencies. Non-phytotoxic oils and oil concentrates can also be added.

Use Examples

The herbicidal action of 3-heterocyclyl-substituted benzoyl derivatives of the formula I was demonstrated by the following greenhouse experiments:

The culture containers used were plastic flowerpots containing loamy sand with approximately 3.0% of humus as 55 substrate. The seeds of the test plants were sown separately for each species.

For the pre-emergence treatment, the active ingredients, suspended or emulsified in water, were applied directly after sowing by means of finely distributing nozzles. The containers were irrigated gently to promote germination and growth and subsequently covered with transparent plastic hoods until the plants had rooted. This cover caused uniform germination of the test plants unless this was adversely affected by the active ingredients.

For the post-emergence treatment, the test plants were grown to a plant height of from 3 to 15 cm, depending on the

126

plant habit, and only then treated with the active ingredients which had been suspended or emulsified in water. To this end, the test plants were either sown directly and grown in the same containers, or they were first grown separately as seedlings and transplanted into the test containers a few days prior to treatment. The rate of application for the post-emergence treatment was 31.2 or 15.6 g/ha a.s. (active substance).

Depending on the species, the plants were kept at from 10 to 25° C. and 20 to 35° C., respectively. The test period extended over 2 to 4 weeks. During this time, the plants were tended, and their response to the individual treatments was evaluated.

Evaluation was carried out using a scale of from 0 to 100. 100 means no emergence of the plants, or complete destruction of at least the aerial parts, and 0 means no damage or normal course of growth.

The plants used in the greenhouse experiments belonged to the following species:

Scientific name	Common name
Chenopodium album	lambsquarters
	(goosefoot)
Setaria faberii	giant foxtail
Sinapsis alba	white mustard
Solanum nigrum	black nightshade
Triticum aestivum	wheat
Zea mays	Indian corn

Compound 3.33 (Table 3) was very effective against the abovementioned mono- and dicotyledonous harmful plants and was well tolerated in winter wheat and maize when applied post-emergence at rates of application of 31.2 and 15.6 g/ha, respectively.

We claim:

 $1.\,\mathrm{A}$ 3-heterocyclyl-substituted benzoyl compound of the formula I

wherein

50

X is O;

 R^1 is C_1 - C_2 -alkyl;

 R^2 is C_1 - C_6 -alkylsulfonyl;

R³ is hydrogen;

R⁴ is hydrogen, and R⁵ is hydrogen;

Y is CR¹³R¹⁴;

R¹³, R¹⁴ are hydrogen;

 R^{15} is a pyrazole of the formula II which is linked in the 4-position

10

128

$$\begin{array}{c}
\mathbb{R}^{18} \\
\mathbb{N} \\
\mathbb{N} \\
\mathbb{R}^{16}
\end{array}$$

wherein

 R^{16} is C_1 - C_6 -alkyl;

Z is H; and

R¹⁸ is hydrogen or methyl.

- **2**. 4-[2-Methyl-3-(4,5-dihydroisoxazol-3-yl)-4-methyl-sulfonyl]benzoyl-1-methyl-5-hydroxy-1H-pyrazole.
- 3. The 3-heterocyclyl-substituted benzoyl compound of the formula I defined in claim 1, wherein R¹ is methyl.
- 4. The 3-heterocyclyl-substituted benzoic acid compound of the formula I defined in claim 1, wherein ${\bf R}^2$ is methylsulfonyl.
- **5**. The 3-heterocyclyl-substituted benzoic acid compound of the formula I defined in claim **1**, wherein R¹⁶ is methyl.
- 6. The 3-heterocyclyl-substituted benzoic acid compound of the formula I defined in claim 1, wherein \mathbb{R}^{18} is hydrogen.
- 7. A composition comprising a herbicidally active amount of at least one 3-heterocyclyl-substituted benzoyl compound of the formula I or of the agriculturally useful salt of I defined in claim 1, and auxiliaries conventionally used for the formulation of crop protection products.

* * * * *